Skip to main content
Log in

Cellulose nanocrystal production from bleached rice straw pulp by combined alkaline and acidic deep eutectic solvents treatment: optimization by response surface methodology

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present study aims to develop a statistical model utilizing the response surface methodology (RSM) to investigate the performance of oxalic acid-choline chloride deep eutectic solvent (OA-ChCl DES) in hydrolyzing amorphous domain of the bleached rice straw pulp (BP), while liberating the oxalic acid-choline chloride DES cellulose nanocrystal (OA-ChCl DES CNC). The process parameters, including temperature, reaction time, and BP to OA-ChCl DES mass ratio, were optimized through the RSM coupled with the face-centered central composite design (FCCCD). The mathematical models were generated, while the analysis of variance (ANOVA) was conducted to determine the most significant factors influencing the response which was measured in terms of yield. The findings revealed that the OA-ChCl DES CNC yield as high as 55.08% was attained under the acidic DES hydrolysis conditions of 79.5 °C, 4 h, and 1:12.64 mass ratio. This regression model enables researchers to predict the OA-ChCl DES CNC yield with respect to the influencing parameters as well as providing an insight for further scale-up process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energ Environ Sci 1:542–564. https://doi.org/10.1039/b807094f

    Article  Google Scholar 

  2. Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20. https://doi.org/10.1155/2014/631013

    Article  Google Scholar 

  3. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  Google Scholar 

  4. Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotech 9:2479–2498. https://doi.org/10.3762/bjnano.9.232

    Article  Google Scholar 

  5. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054. https://doi.org/10.1021/bm049300p

    Article  Google Scholar 

  6. Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230. https://doi.org/10.1021/bm400219u

    Article  Google Scholar 

  7. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  Google Scholar 

  8. Jordan JH, Easson MW, Condon BD (2020) Cellulose hydrolysis using ionic liquids and inorganic acids under dilute conditions: morphological comparison of nanocellulose. RSC Adv 10:39413–39424. https://doi.org/10.1039/D0RA05976E

    Article  Google Scholar 

  9. Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromol 17:3025–3032. https://doi.org/10.1021/acs.biomac.6b00910

    Article  Google Scholar 

  10. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 70–71. https://doi.org/10.1039/b210714g

    Article  Google Scholar 

  11. Gunny AAN, Arbain D, Nashef EM, Jamal P (2015) Applicability evaluation of deep eutectic solvents-cellulase system for lignocellulose hydrolysis. Bioresource Technol 181:297–302. https://doi.org/10.1016/j.biortech.2015.01.057

    Article  Google Scholar 

  12. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017) Applications of deep eutectic solvents in biotechnology and bioengineering-promises and challenges. Biotechnol Adv 35:105–134. https://doi.org/10.1016/j.biotechadv.2016.11.006

    Article  Google Scholar 

  13. Douard L, Bras J, Encinas T, Belgacem MN (2021) Natural acidic deep eutectic solvent to obtain cellulose nanocrystals using the design of experience approach. Carbohyd Polym 252:117136. https://doi.org/10.1016/j.carbpol.2020.117136

  14. Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631. https://doi.org/10.1021/acssuschemeng.7b00954

    Article  Google Scholar 

  15. Ling Z, Edwards JV, Guo Z, Prevost NT, Nam S, Wu Q, French AD, Xu F (2019) Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26:861–876. https://doi.org/10.1007/s10570-018-2092-9

    Article  Google Scholar 

  16. Lim WL, Gunny AAN, Kasim FH, AlNashef IM, Arbain D (2019) Alkaline deep eutectic solvent: a novel green solvent for lignocellulose pulping. Cellulose 26:4085–4098. https://doi.org/10.1007/s10570-019-02346-8

    Article  Google Scholar 

  17. Lim WL, Gunny AAN, Kasim FH, Gopinath SCB, Kamaludin NHI (2021) Cellulose nanocrystals from bleached rice straw pulp: acidic deep eutectic solvent versus sulphuric acid hydrolyses. Cellulose 1–17. https://doi.org/10.1007/s10570-021-03914-7

  18. Karim MZ, Chowdhury ZZ, Hamid SBA, Ali ME (2014) Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst. Materials 7:6982–6999. https://doi.org/10.3390/ma7106982

    Article  Google Scholar 

  19. Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53:126–131. https://doi.org/10.1080/00031305.1999.10474445

    Article  Google Scholar 

  20. DiNardo A, Brar HS, Subramanian J, Singh A (2019) Optimization of microwave-assisted extraction parameters and characterization of phenolic compounds in Yellow European Plums. Can J Chem Eng 97:256–267. https://doi.org/10.1002/cjce.23237

    Article  Google Scholar 

  21. Liu Y, Luo X, Lan Z, Tang J, Zhao P, Kan H (2018) Ultrasonic-assisted extraction and antioxidant capacities of flavonoids from Camellia fascicularis leaves. CyTA - J Food 16:105–112. https://doi.org/10.1080/19476337.2017.1343867

    Article  Google Scholar 

  22. Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohyd Polym 85:245–250. https://doi.org/10.1016/j.carbpol.2011.02.022

    Article  Google Scholar 

  23. Chen YW, Lee HV, Abd Hamid SB (2017) Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: response surface methodology. Carbohyd Polym 178:57–68. https://doi.org/10.1016/j.carbpol.2017.09.029

    Article  Google Scholar 

  24. Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5:76–89. https://doi.org/10.1007/s40725-019-00088-1

    Article  Google Scholar 

  25. Song W, Deng Y, Zhu H (2016) Research on wheat straw pulping with ionic liquid 1-ethyl-3-methylimidazole bromide. Kemija u Industriji / J Chem Chem Eng 65:579–585. https://doi.org/10.15255/KUI.2016.032

    Article  Google Scholar 

  26. Kaith BS, Sharma R, Kalia S, Bhatti MS (2014) Response surface methodology and optimized synthesis of guar gum-based hydrogels with enhanced swelling capacity. RSC Adv 4:40339–40344. https://doi.org/10.1039/c4ra05300a

    Article  Google Scholar 

  27. Uyanık GK, Güler N (2013) A study on multiple linear regression analysis. Procd Soc Behv 106:234–240. https://doi.org/10.1016/j.sbspro.2013.12.027

    Article  Google Scholar 

  28. Liu JZ, Weng LP, Zhang QL, Xu H, Ji LN (2003) Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology. World J Microb Biot 19:317–323. https://doi.org/10.1023/A:1023622925933

    Article  Google Scholar 

  29. Chen X, Du W, Liu D (2008) Response surface optimization of biocatalytic biodiesel production with acid oil. Biochem Eng J 40:423–429. https://doi.org/10.1016/j.bej.2008.01.012

    Article  Google Scholar 

  30. Dahmoune F, Remini H, Dairi S, Aoun O, Moussi K, Bouaoudia-Madi N, Adjeroud N, Kadri N, Lefsih K, Boughani L, Mouni L, Nayak B, Madani K (2015) Ultrasound assisted extraction of phenolic compounds from P. lentiscus L. leaves: comparative study of artificial neural network (ANN) versus degree of experiment for prediction ability of phenolic compounds recovery. Ind Crop Prod 77:251–261. https://doi.org/10.1016/j.indcrop.2015.08.062

    Article  Google Scholar 

  31. Masoumi HRF, Kassim A, Basri M, Abdullah DK (2011) Determining optimum conditions for lipase-catalyzed synthesis of triethanolamine (TEA)-based esterquat cationic surfactant by a Taguchi robust design method. Molecules 16:4672–4680. https://doi.org/10.3390/molecules16064672

    Article  Google Scholar 

  32. Yuan X, Liu J, Zeng G, Shi J, Tong J, Huang G (2008) Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew Energ 33:1678–1684. https://doi.org/10.1016/j.renene.2007.09.007

    Article  Google Scholar 

  33. Dhandhukia PC, Thakkar VR (2008) Response surface methodology to optimize the nutritional parameters for enhanced production of jasmonic acid by Lasiodiplodia theobromae. J Appl Microbiol 105:636–643. https://doi.org/10.1111/j.1365-2672.2008.03803.x

    Article  Google Scholar 

  34. Beg QK, Sahai V, Gupta R (2003) Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem 39:203–209. https://doi.org/10.1016/S0032-9592(03)00064-5

    Article  Google Scholar 

  35. Lee HV, Yunus R, Juan JC, Taufiq-Yap YH (2011) Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Process Technol 92:2420–2428. https://doi.org/10.1016/j.fuproc.2011.08.018

    Article  Google Scholar 

  36. Deepak V, Kalishwaralal K, Ramkumarpandian S, Babu SV, Senthilkumar SR, Sangiliyandi G (2008) Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technol 99:8170–8174. https://doi.org/10.1016/j.biortech.2008.03.018

    Article  Google Scholar 

  37. Hong B, Chen L, Xue G, Xie Q, Chen F (2014) Optimization of oxalic acid pretreatment of moso bamboo for textile fiber using response surface methodology. Cellulose 21:2157–2166. https://doi.org/10.1007/s10570-014-0227-1

    Article  Google Scholar 

  38. Lu Z, Fan L, Zheng H, Lu Q, Liao Y, Huang B (2013) Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Bioresource Technol 146:82–88. https://doi.org/10.1016/j.biortech.2013.07.047

Download references

Funding

The authors would like to thank the Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP) and Ministry of Education for financing the research under Fundamental Research Grant Scheme FRGS/1/2018/STG01/UNIMAP/03/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Anas Nagoor Gunny.

Ethics declarations

Competing interests

The authors declare no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, WL., Gunny, A.A.N., Kasim, F.H. et al. Cellulose nanocrystal production from bleached rice straw pulp by combined alkaline and acidic deep eutectic solvents treatment: optimization by response surface methodology. Biomass Conv. Bioref. 12 (Suppl 1), 25–33 (2022). https://doi.org/10.1007/s13399-021-01654-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01654-z

Keywords

Navigation