Skip to main content

Co-digestion of poultry litter with cellulose-containing substrates collected in the urban ecosystem

Abstract

This study examined the influence of fallen leaves from the urban ecosystem as a cellulose-containing additive in the process of anaerobic digestion of poultry litter. Using X-ray fluorescence analysis, the elemental composition of the mineral component of dried leaf samples was determined. In the process of studying the anaerobic digestion of poultry litter with cellulose-containing co-substrate, the doses of the dry leaves were analyzed at 15%, 30% and 45% of the dry matter (DM) of leaf additives as a co-substrate. The obtained results indicated that the cellulose-containing co-substrate from the dried leaves after preliminary preparation can intensify biogas evolution and reduce the lag phase of the production of methane in the anaerobic digestion of poultry litter. Additionally, the optimal content of dry leaves was determined at 30% on the DM. A further increase in the percentage did not lead to significant changes in the indicators of anaerobic digestion. The use of a modified Gompertz model and the kinetic parameters of the methanogenesis process with the formation of a system of differential levels will provide more insights for their effective use in predicting and optimizing anaerobic digestion, which will be carried out in further studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chasnyk O, Sołowski G, Shkarupa O (2015) Historical, technical and economic aspects of biogas development: case of Poland and Ukraine. Renew Sust Energ Rev 52:227–239

    Article  Google Scholar 

  2. 2.

    Shapovalov EB (2019) Improvement of biotechnology of anaerobic fermentation of chicken droppings with reduced amount of runoff [dissertation]. National University of Bioresources and Nature Management of Ukraine. Kiev, Kiev

    Google Scholar 

  3. 3.

    Koval V, Mikhno I, Hajduga G, Gaska K (2019) Economic efficiency of biogas generation from food product waste. E3S Web Conferences 100:00039

    Article  Google Scholar 

  4. 4.

    Havrysh V, Kalinichenko A, Mentel G, Olejarz T (2020) Commercial biogas plants: lessons for Ukraine. Energies 13(10):2668

    Article  Google Scholar 

  5. 5.

    Pavliukh L, Boichenko S, Onopa V, Tykhenko O, Topilnytskyy P, Romanchuk V, Samsin I (2019) Resource potential for biogas production in Ukraine. Chemistry & Chemical Technology 13(1):101–106

    Article  Google Scholar 

  6. 6.

    Gritsun AV, Babi IA, Yaropud VM (2012) Vidkhody ptakhivnytstva – dzherelo nevykorystanoi enerhii (Poultry farming wastes - source of unused energy). Zbirnyk naukovykh prats Vinnytskoho natsionalnoho ahrarnoho universytetu. Seriia: Tekhnichni nauky 10 1(58):27–32

    Google Scholar 

  7. 7.

    Popyk OV (2014) Ekoloho-ekonomichni aspekty povodzhennia z opalym lystiam na urbanizovanykh terytoriiakh (Ecological and economic aspects fallen leaves treatment in urban areas). Ekonomichni innovatsii 58:266–272

    Google Scholar 

  8. 8.

    Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawai M, Ibrahim FH (2017) Biomass and bioenergy: an overview of the development potential in Turkey and Malaysia. Renew Sust Energ Rev 79:1285–1302

    Article  Google Scholar 

  9. 9.

    Olufunmi AO (2014) Microbiological potentials of co-digestion of chicken droppings and banana peels as substrates for biogas production. J Chem Pharm Res 6(4):1088–1092

    Google Scholar 

  10. 10.

    Owamah HI, Alfa MI, Dahunsi SO (2014) Optimization of biogas from chicken droppings with Cymbopogon citratus. Renew Energy 68:366–371

    Article  Google Scholar 

  11. 11.

    Zhang T, Yu Y, Liu L, Han Y, Ren G, Yang G (2014) Improved biogas production from chicken manure anaerobic digestion using cereal residues as co-substrates. Energy Fuel 28(4):2490–2495

    Article  Google Scholar 

  12. 12.

    Nie H, Jacobi HF, Strach K, Xu C, Zhou H, Liebetrau J (2015) Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate. Bioresour Technol 178:238–246

    Article  Google Scholar 

  13. 13.

    Böjti T, Kovacs KL, Kakuk B, Wirth R, Rakhely G, Bagi Z (2017) Pretreatment of poultry manure for efficient biogas production as monosubstrate or co-fermentation with maize silage and corn stover. Anaerobe 46:138–145

    Article  Google Scholar 

  14. 14.

    Simonov GA, Tyapugin SE, Shaposhnikov AA, Zherebnen SV (2011) Conservant-enricher increases silage quality. Achiev Sci Technol Agric Sect Achievements of science and technology in the agricultural sector 1:57–59

    Google Scholar 

  15. 15.

    Geletukha G, Zheliezna T (2014) Perspektyvy vyrobnytstva ta vykorystannia biohazu v Ukraini (Prospects for the use of agricultural residues for energy production in Ukraine). Available at: https://saf.org.ua/wp-content/uploads/2019/04/position-paper-uabio-4-ua.pdf (accessed 31 May 2014)

  16. 16.

    Dubrovskis V, Plume I, Kazulis V, Celms A, Kotelenecs V, Zabarovskis E (2012) Biogas production potential from agricultural biomass and organic residues in Latvia. Engineering for Rural Development 11:566–571

    Google Scholar 

  17. 17.

    Yang G, Hu Y, Wang J (2019) Biohydrogen production from co-fermentation of fallen leaves and sewage sludge. Bioresour Technol 285:121342

    Article  Google Scholar 

  18. 18.

    Liang Y, Zhang H (2013) Mou G (2013) Experimental study on biogas production through anaerobic digestion of wheat straw and urban fallen leaves. International Conference on Materials for Renewable Energy & Environment 1:265–269

    Article  Google Scholar 

  19. 19.

    Bublienko N, Semenova O, Skydan O, Tymoshchuk Т, Tkachuk V (2020) Biotekhnolohichna utylizatsiia opaloho lystia (Biotechnological utilization of fallen leaves). Naukovi horyzonty 02(87):7–14

    Google Scholar 

  20. 20.

    State Environmental Inspectorate Ukraine 2019. Order State Environmental Inspectorate Ukraine. Provisional list of measurement methods approved for use by the territorial authorized and interregional regional agencies

  21. 21.

    Hongguang Z, Jing Y, Cheng X (2019) Application of modified Gompertz model to study on biogas production from middle temperature co-digestion of pig manure and dead pigs. E3S Web Conferences 118:03022

    Article  Google Scholar 

  22. 22.

    Karaeva JV, Kamalov RF, Kadiyrov AI (2019) Production of biogas from poultry waste using the biomass of plants from Amaranthaceae family. IOP Conference Series: Earth and Environmental Science 288:012096

    Article  Google Scholar 

  23. 23.

    Yono B, Syaichurrozi I, Sumardiono S (2014) Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified Gompertz model and first order kinetic model. Res J Appl Sci Eng Technol 7(13):2798–2805

    Article  Google Scholar 

  24. 24.

    Berezjuk ОV (2015) Modelirovanie sostava biogaza pri anaerobnom razlozhenii tverdyh bytovyh othodov (Modeling of biogas composition during the anaerobic decomposition of hard domestic wastes). Avtomatizirovannye tekhnologii i proizvodstva 4:44–47

    Google Scholar 

  25. 25.

    Dandikas V (2018) Development of regression models to predict biogas production rate and biogas yield [dissertation]. Technical University of Munich, Munich

    Google Scholar 

  26. 26.

    Tufaner F, Demirci Y (2020) Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models. Clean Techn Environ Policy 22:713–724

    Article  Google Scholar 

  27. 27.

    State Statistics Service of Ukraine (2019). Livestock in Ukraine: statistical publications. http://www.ukrstat.gov.ua/

  28. 28.

    Bryukhanov AY, Shalavina EV, Vasil'ev EV (2014) Metodika ukrupnennoj ocenki sutochnogo i godovogo vyhoda navoza/pometa (Methods for aggregated estimation of daily and yearly manure/dung output). Molochnohozyajstvennyj vestnik 1(13):78–85

    Google Scholar 

  29. 29.

    Martsinkevich V, Kolomiets N (2015) Povodzhennia z vidkhodamy tvarynnytstva: perevahy tekhnolohii anaerobnoho zbrodzhuvannia (Management of animal wastes: advantages of anaerobic digestion technology). National Ecological Center of Ukraine, Kiev, 24 p

    Google Scholar 

  30. 30.

    Zamula I, Bondarchuk V (2013) Bukhhalterskyi oblik vidkhodiv silskohospodarskoho vyrobnytstva: ekolohichnyi vektor (Accounting of agricultural production wastes: ecological vector). Problemy teorii ta metodolohii bukhhalterskoho obliku, kontroliu i analizu 3(27):85–96

    Google Scholar 

  31. 31.

    Melnik VA (2020) Kak pererabatyvayut ptichij pomet: udobrenie i biogaz. (How poultry manure is processed: fertilizer and biogas). Available at: https://a7d.com.ua/novini/43216-kak-pererabatyvajut-ptichij-pomet-udobrenie-i-biogaz.html (accessed 15 March 2019)

  32. 32.

    Apaeva NN, Manishkin SG, Kudryashova LV, Yamalieva AM (2020) An innovative approach to the use of the granulated organic fertilizers based on bird droppings on crops of spring wheat. IOP Conference Series: Earth and Environmental Science 421(2):022062

    Article  Google Scholar 

  33. 33.

    Charles MW (2008) Poultry waste management in developing countries. In: FAO (ed.) Poultry Development Review, 3-9

  34. 34.

    Voronkova NA, Khramtsov IF, Voronkova MN, Doronenko VD (2015) Agroekologicheskie aspekty pererabotki i ispol'zovaniya organicheskih othodov v zemledelii (Agroecological aspects of processing and use of organic fertilizers in farming). Sovremennye problemy nauki i obrazovaniya 2(2)

  35. 35.

    Buriak RI (2017) Doslidzhennia ta prohnozuvannia koniunktury rynku produktsii ptakhivnytstva Ukrainy (Research and forecasting of conditions of Ukraine poultry products market). Naukovyi visnyk NUBiP Ukrainy. Seriia: Ekonomika, ahrarnyi menedzhment, biznes 260:41–53

    Google Scholar 

  36. 36.

    Poultry Market (2018) Dynamics of poultry production in Ukraine since 1990 and forecasts of industry development till 2020. Available at: http://market.avianua.com/?p=48 (accessed 5 July 2020)

  37. 37.

    Ryabukha G (2019) Derzhavne rehuliuvannia ta prohnozuvannia rozvytku ptakhivnytstva yak perspektyvnoi haluzi tvarynnytstva (State regulation and forecasting of pultry breeding as a prospective livestock industry). Problemy i perspektyvy ekonomiky ta upravlinnia 1(17):107–113

    Google Scholar 

  38. 38.

    Hinkliff D, Frommann J, Gunsilius E (2017) Opportunities for recycling waste into energy in the process of solid domestic waste management. Guidelines for decision-makers in developing countries and countries with economies in transition, ed. GIZ GmbH, Bonn.

  39. 39.

    Salyuk AI, Zhadan SA, Shapovalov EB, Tarasenko GA (2016) Inhibuvannia vyrobnytstva metanu z kuriachoho poslidu amoniinym azotom (Inhibition of methane production from chicken manure by ammonium nitrogen). Vidnovlıvana energetyka 1:79–83

    Google Scholar 

  40. 40.

    Nahm KH (2002) Evaluation of the nitrogen content in poultry manure. World's Poultry Science Journal 1(59):77–88

    Google Scholar 

  41. 41.

    Rajagopal R, Massé DI, Singh GA (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641

    Article  Google Scholar 

  42. 42.

    Czekała W, Dach J, Lewicki A, Gajewska K, Staszak Ż (2017) Utilization of digestate obtained from methane fermentation of chicken manure. In: Lorencowicz E, Uziak J, Huyghebaert B (eds) Farm machinery and processes management in sustainable agriculture, 9th edn. International Scientific Symposium, ULS Lublin, pp 92–96

    Google Scholar 

  43. 43.

    Kelleher BP, Leahy JJ, Henihan AM, O’Dwyer TF, Sutton D, Leahy MJ (2002) Advances in poultry litter disposal technology — a review. Bioresour Technol 83(1):27–36

    Article  Google Scholar 

  44. 44.

    Shapovalov YB, Salyuk AI, Kotinskiy AV, Tarasenko R (2019) The research of dry chicken manure methanogenesis stability. Environmental problems 4(1):14–18

    Article  Google Scholar 

  45. 45.

    Salyuk AI, Zhadan SA, Shapovalov EB, Tarasenko RA (2015) Vliyanie vodopotrebleniya na effektivnost metanovogo brozheniya kurinogo pometa (Impact of water consumption on methane of chicken manure). Al'ternativnaya energetika i ekologiya:15-16–53-58. https://doi.org/10.15518/isjaee.2015.15-16.008

  46. 46.

    Šinkora M, Havlíček M (2011) Monitoring of dry anaerobic fermentation in experimental facility with use of biofilm reactor. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 59(6):343–354

    Article  Google Scholar 

  47. 47.

    Abouelenien F, Namba Y, Nishio N, Nakashimada Y (2016) Dry co-digestion of poultry manure with agricultural wastes. Appl Biochem Biotechnol 178(5):932–946

    Article  Google Scholar 

  48. 48.

    Wunscher H, Frank T, Cyriax A, Tobehn S (2020) Monitoring of ammonia in biogas. In., Ortlepp Th., Kirner Th. Chem Eng Technol 43(1):99–103

    Article  Google Scholar 

Download references

Acknowledgements

This research project was carried out as planned research projects of the Department of Ecology and Environmental Protection Technologies, Sumy State University, connected with subjects “Reduction of technogenic loading on the environment of enterprises of chemical, machine-building industry and heat, and power engineering” according to the scientific and technical programme of the Ministry of Education and Science of Ukraine (state registration № 0116U006606); Joint Ukrainian-Czech R&D project “Bioenergy innovations in waste recycling and natural resource management”, 2021–2022.

We are thankful to the Czech Republic Development Cooperation for the support provided by the Ministry of Foreign Affairs of the Czech Republic, which allowed this scientific cooperation to start within the project “AgriSciences Platform for Scientific Enhancement of HEIs in Ukraine”. In addition, work of H.R. was supported by the Internal Grant Agency of the Faculty of Tropical AgriSciences, no. 20213111. 

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yelizaveta Chernysh or Hynek Roubík.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chernysh, Y., Roy, I., Chubur, V. et al. Co-digestion of poultry litter with cellulose-containing substrates collected in the urban ecosystem. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01582-y

Download citation

Keywords

  • Anaerobic digestion
  • Poultry litter
  • Fallen leaves
  • Co-digestion
  • Cellulose-containing co-substrate
  • Biogas