Skip to main content
Log in

Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The coffee pulp is the solid waste most generated during the coffee humid pulping. It contains an elevated concentration of organic matter and lignocellulosic materials. In addition, the low rate of biodegradability of the coffee pulp waste may cause severe environmental damage. Therefore, the aim of this study was to evaluate the effect of acid and thermal pre-treatments in the biodegradability rate, followed by an anaerobic digestion of the coffee pulp and collect biogas production. Thermal and acid pre-treatments (50, 70, and 90 °C, and concentration of 2.5, 5, and 10% V·V−1 of acetic acid, respectively) were applied, both during 1 h, evaluating the organic matter solubilization. Posteriorly, the biodegradability and biogas production using anaerobic digestion for 35 days were evaluated. Finally, during 90 days in semicontinuous, the increase of applied organic load of 1 kg VS m−3 day−1 with Δ 1 kg VS m−3 day−1 every 30 days until reaching 3 kg m−3 day−1 was evaluated. The thermal pretreatment to 90 °C and 1 h improved the solubility and hydrolysis considered limiting of the anaerobic process, reducing the hydraulic retention time from 21 to 15 days, and increasing the biogas yields (0.92 L g VSrem−1 year 79.8% CH4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miñón-Fuentes R, Aguilar-Juárez O (2019) Hydrogen production from coffee pulp by dark fermentation. Water Sci Technol 80(9):1692–1701. https://doi.org/10.2166/wst.2019.416

    Article  Google Scholar 

  2. Chanakya HN, De Alwis AAP (2004) Environmental issues and management in primary coffee processing. Process Saf Environ 82:291–300. https://doi.org/10.1205/095758204323162319

    Article  Google Scholar 

  3. Servicio de Información Agroalimentaria y Pesquera (2016) Anuario Estadístico de la Producción Agrícola. Cierre de la producción agrícola por estado http://infosiap.siap.gob.mx/aagricola_siap_gb/icultivo/index.jsp.

  4. Bonilla-Hermosa VA, Duarte WF, Schwan RF (2014) Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresour Technol 166:142–150

    Article  Google Scholar 

  5. Alfaro R, Rodríguez JJ (2009) Nota Técnica Impacto ambiental del procesamiento del café en Costa Rica. Agron Costarric 18(2):217–225 http://www.mag.go.cr/rev_agr/v18n02_217.pdf

    Google Scholar 

  6. Alves RC, Rodríguez F, Nunes MA, Vinha AF, Oliveira MBPP (2017) State of the art in coffee processing by-products. In: Galanakis CM (ed) Handbook of coffee processing by-product. Academic Press, London, pp 1–26

    Google Scholar 

  7. Dessie W, Xin F, Zhang W, Jiang Y, Wu H, Ma J, Jiang M (2018) Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 102(23):9893–9910

    Article  Google Scholar 

  8. Mahanty B, Zafar M, Han MJ, Park HS (2014) Optimization of codigestion of various industrial sludges for biogas production and sludge treatment: Methane production potential experiments and modelling. Waste Manag 34:1018–1024

    Article  Google Scholar 

  9. Bharathiraja B, Sudharsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappan J (2018) Biogas production: a review on composition, fuel properties, feedstock and principles of anaerobic digestion. Renew Sust Energ Rev 90:570–582

    Article  Google Scholar 

  10. Veluchamy C, Kalamdhad AS (2020) Screening of different thermal heating processes for increased methane production from lignocellulose waste material. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00886-9

  11. Corro G, Paniagua L, Pal U, Bañuelos F, Rosas M (2013) Generation of biogas from coffee-pulp and cowdung co-digestion: infrared studies of postcombustion emissions. Energy Convers Manag 7:471–481

    Article  Google Scholar 

  12. Pandey A, Soccol CR, Nigam P, Brand D (2000) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6:153–162

    Article  Google Scholar 

  13. Rojas JBU, Verreth JAJ, Amato S, Huisman EA (2003) Biological treatments affect the chemical composition of coffee Pulp. Bioresour Technol 89:267–274

    Article  Google Scholar 

  14. Widjaja T, Noviyanto AA, Gunawan S (2016) The effect of rumen and mixed microorganism (rumen and effective microorganism) on biogas production from rice straw waste. ARPN-JEAS 11:2702–2710

    Google Scholar 

  15. Tyagi VK, Lo SL, Rajpal A (2014) Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion. Environ Sci Pollut Res 21(9):6205–6217

    Article  Google Scholar 

  16. Meyer T, Edwards EA (2014) Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res 65:321–349

    Article  Google Scholar 

  17. Elliott A, Mahmood T (2012) Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste activated sludge. Water Environ Res 84(6):497–505

    Article  Google Scholar 

  18. Principi P, König R, Cuomo M (2019) Anaerobic digestion of lignocellulosic substrates: benefits of pre-treatments. Curr Sustain/Renew Energy Rep 6(3):61–70

    Article  Google Scholar 

  19. Kim M, Kim B-C, Nam K, Choi Y (2018) Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw. Biochem Eng J 140:108–114

    Article  Google Scholar 

  20. Tyagi VK, Lo SL (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Biotechnol 10:215–242. https://doi.org/10.1007/s11157-011-9244-9

    Article  Google Scholar 

  21. Atenodoro-Alonso J, Ruíz-Espinoza JE, Alvarado-Lassman A, Martínez-Sibaja A, Martínez-Delgadillo SA, Méndez-Contreras JM (2015) The enhanced anaerobic degradability and kinetic parameters of pathogenic inactivation of wastewater sludge using pre-and post-thermal treatments Part 2. Rev Mexicana Ingeniería Quím 14(2):311–319

    Google Scholar 

  22. Menert A, Vaalu T, Michelis M, Blonskaja V, Rikmanasn E, Mets A, Vilu R (2008) Influence of thermal pre-treatment on mesophilic anaerobic digestion of sludges. Proceedings of the 7th International Conference. Environmental Engineering, Faculty of Environmental Engineering, Vilnius Gediminas Technical University, May 22–23, 2008, Vilnius, Lithuania, 625–635.

  23. Wilson CA, Novak J (2009) Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pre-treatment. Water Res 43:4489–4498

    Article  Google Scholar 

  24. Yang X, Wang X, Wang L (2010) Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process. Bioresour Technol 101(8):2580–2584

    Article  Google Scholar 

  25. Monlau F, Barakat A, Steyer JP, Carrere H (2012) Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol 120:241–247

    Article  Google Scholar 

  26. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 30:164–174

    Article  Google Scholar 

  27. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    Article  Google Scholar 

  28. Corrêa CLO, Penha EM, Freitas-Silva O, Luna AS, Gottschalk LMF (2020) Enzymatic technology application on coffee co-products: A review. Waste Biomass Valor. https://doi.org/10.1007/s12649-020-01208-w

  29. Procentese A, Raganati F, Navarini L, Olivieri G, Russo ME, Marzoccchella A (2018) Coffee silverskin as a renewable resource to produce butanol and isopropanol. Chem Eng Trans 64:139–144

    Google Scholar 

  30. Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R (2018) Biobutanol production from coffee silverskin. Microb Cell Factories 17(1):1–9

    Article  Google Scholar 

  31. Pleissner D, Neu AK, Mehlmann K, Schneider R, Puerta-Quintero GI, Venus J (2016) Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresour Technol 218:167–173

    Article  Google Scholar 

  32. Dos Santos LC, Adarme OFH, Baêta BEL, Gurgel LVA, De Aquino SF (2018) Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresour Technol 263:601–612

    Article  Google Scholar 

  33. Chala B, Oechsner H, Latif S, Müller J (2018) Biogas potential of coffee processing waste in Ethiopia. Sustainability 10(8):2678

    Article  Google Scholar 

  34. Moreno EL, Zapata AD (2019) Biohydrogen production by co-digestion of fruits and vegetable waste and coffee mucilage. Rev Facult Nacional Agronomía Medellín 72(3):9007–9018

    Article  Google Scholar 

  35. Ruiz-Espinoza JE, Méndez-Contreras JM, Alvarado-Lassman A, Martínez-Delgadillo SA (2012) Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge. J Environ Sci Health A 47(12):1795–1802

    Article  Google Scholar 

  36. Nava-Valente N, Alvarado-Lassman A, Nativitas-Sandoval LS, Méndez-Contreras JM (2016) Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): effect on organic matter solubilization, biodegradability and bioenergy production. J Environ Sci Health A 51(5):446–453

    Article  Google Scholar 

  37. Liao X, Li H, Zhang Y, Liu C, Chen Q (2016) Accelerated high-solid anaerobic digestion of sewage sludge using low-temperature thermal pretreatment. Int Biodeterior Biodegrad 106:141–149

    Article  Google Scholar 

  38. Rodriguez C, Alaswad A, Benyounis KY, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sust Energ Rev 68(Part 2):1193–1204

    Article  Google Scholar 

  39. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  Google Scholar 

  40. Gonzalez R, Jameel H, Chang H, Treasure T, Pirraglia A, Saloni D (2011) Thermo-mechanical pulping as a pretreatment for agricultural biomass for biochemical conversion. Bioresources. 6(2):1599–1614

    Google Scholar 

  41. Lizama AC, Figueiras CC, Herrera RR, Pedreguera AZ, Espinoza JER (2017) Effects of ultrasonic pretreatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge. Int Biodeterior Biodegradation 123:1–9

    Article  Google Scholar 

  42. López-Escobar LA, Martínez-Hernández S, Corte-Cano G, Méndez-Contreras JM (2014) Influence of organic loading rate on methane production in a CSTR from physicochemical sludge generated in a poultry slaughterhouse. J Environ Sci Health A 49(14):1710–1717

    Article  Google Scholar 

  43. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington

    Google Scholar 

  44. Gerhard P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. ASM Press, Washington, DC

    Google Scholar 

  45. Battista F, Fino D, Mancini G (2016) Optimization of biogas production from coffee production waste. Bioresour Technol 200:884–890

    Article  Google Scholar 

  46. Metcalf L, Eddy HP, Tchobanoglous G (1991) Wastewater engineering: treatment, disposal, and reuse (Vol. 4). McGraw-Hill, New York

    Google Scholar 

  47. Fan J, Wang W, Zhang B, Guo Y, Ngo HH, Guo W, Zhang J, Wu H (2013) Nitrogen removal in intermittently aerated vertical Flow constructed wetlands: impact of influent COD/N ratios. Bioresour Technol 143:461–466

    Article  Google Scholar 

  48. Haddis A, Devi R (2008) Effect of effluent generated from coffee processing plant on the water bodies and human health in its vicinity. J Hazard Mater 152(1):259–262

    Article  Google Scholar 

  49. Cruz-Salomón A, Ríos-Valdovinos E, Pola-Albores F, Lagunas-Rivera S, Meza-Gordillo R, Ruíz-Valdiviezo VM (2018) Evaluation of hydraulic retention time on treatment of coffee processing wastewater (CPWW) in EGSB bioreactor. Sustainability 10(1):83

    Google Scholar 

  50. Appels L, Degreve J, Van der Bruggen B, Van Impe J, Dewil R (2010) Influence of low temperature thermal pretreatment on sludge solubilization, heavy metal release and anaerobic digestion. Bioresour Technol 101:5743–5748

    Article  Google Scholar 

  51. Liu Y, Li X, Kang X, Yuan Y, Jiao M, Zhan J, Du M (2015) Effect of extracelular polymeric substances disintegration by ultrasonic pretreatment on waste activated sludge acidification. Int Biodeterior Biodegrad 102:31–136

    Article  Google Scholar 

  52. Zhang J, Lv C, Tong J, Liu J, Liu J, Yu D, Wang Y, Chen M, Wei Y (2015) Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour Technol 200:253–261

    Article  Google Scholar 

  53. Wu L, Higashimori A, Qin Y, Hojo T, Kubota K, Li Y (2016) Comparison oh hyper thermophilic-mesophilic two-stage with single-stage mesophilic anaerobic digestion of waste activated sludge: process performance and microbial community analysis. Chem Eng J 290:290–301

    Article  Google Scholar 

  54. Frijns J, Hofman J, Nederlof M (2013) The potential of (waste) water as energy carrier. Energy Convers Manag 65:357–363

    Article  Google Scholar 

  55. Kor-Bicakci G, Eskicioglu C (2019) Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew Sust Energ Rev 110:423–443

    Article  Google Scholar 

  56. Devlin DC, Esteves SRR, Dinsdale RM, Guwy AJ (2011) The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour Technol 102(5):4076–4082

    Article  Google Scholar 

  57. Pavlostathis SG, Gossett JM (1986) A kinetic model for anaerobic digestion of biological sludge. Biotechnol Bioeng 28(10):1519–1530

    Article  Google Scholar 

  58. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781

    Article  Google Scholar 

  59. Weemaes MP, Verstraete WH (1998) Evaluation of current wet sludge disintegration techniques. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 73(2):83–92

    Article  Google Scholar 

  60. Vismara R, Canziani R, Malpei F, Piccinini S (2011) Biogas da agrozootecnia e agroindustria. Dario Flaccovio Editore, Palermo

    Google Scholar 

  61. Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Sofo A (2016) Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23(19):19002–19029

    Article  Google Scholar 

  62. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18(1):1–18

    Article  Google Scholar 

  63. Zhen G, Lu X, Kato H, Zhao Y, Li Y (2017) Overview of pretreatments strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale applications and future perspectives. Renew Sust Energ Rev 69:559–577

    Article  Google Scholar 

  64. Sophie M, Li Q, Takayanagi K, Li YY (2015) Comprehensive monitoring and management of a long-term thermophilic CSTR treating coffee grounds, coffee liquid, milk waste, and municipal sludge. Bioresour Technol 192:202–211

    Article  Google Scholar 

  65. Li Q, Li YY, Quiao W, Wang X, Tagayanagi K (2015a) Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR. Bioresour Technol 185:308–315

    Article  Google Scholar 

  66. Corro G, Paniagua L, Pal U, Bañuelos F, Rosas M (2013) Generation of biogas from coffee-pulp and cow-dung co-digestion: infrared studies of postcombustion emissions. Energy Convers Manag 74:471–481

    Article  Google Scholar 

  67. Jard G, Jackowiak D, Carrère H, Delgenès JP, Torrijos M, Steyer JP, Dumas C (2012) Batch and semi-continuous anaerobic digestion of Palmaria palmata: comparison with Saccharina latissima and inhibition studies. Chem Eng J 209:513–519

    Article  Google Scholar 

  68. Baier U, Schleiss K (2005) Greenhouse gas emission reduction through anaerobic digestion of coffee pulp. In Proceedings of the 4th International Symposium Anaerobic Digestion of Solid Waste, Copenhagen, Denmark (Vol. 31)

  69. Savoo S, Mudhoo A (2018) Biomethanation macrodynamics of vegetable residues pretreated by low-frequency microwave irradiation. Bioresour Technol 248:280–286

    Article  Google Scholar 

  70. Murthy PS, Naidu MM (2012) Sustainable management of coffee industry by-products and value addition—a review. Resour Conserv Recycl 66:45–58

    Article  Google Scholar 

Download references

Code availability

Not applicable

Funding

This study was partially funded by the “Tecnológico Nacional de México” with their “Convocatoria 2020: Proyecto de Investigación Científica.”

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Noemi Nava-Valente, Oscar Andrés Del Ángel Coronel, Jesús Atenodoro-Alonso, and Luis Antonio López Escobar. The first draft of the manuscript was written by Noemi Nava-Valente, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to López-Escobar Luis Antonio.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read the manuscript and expressed their consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nava-Valente, N., Del Ángel-Coronel, O.A., Atenodoro-Alonso, J. et al. Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production. Biomass Conv. Bioref. 13, 4817–4830 (2023). https://doi.org/10.1007/s13399-021-01529-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01529-3

Keywords

Navigation