Skip to main content

Advertisement

Log in

A comprehensive study on the transition metal–catalysed pyrolysis kinetics, thermodynamics and mechanisms of bamboo powder

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Effects of Co(II), Ni(II) and Fe(III) impregnations on the pyrolysis behaviours of bamboo were investigated by using thermogravimetry and fixed-bed pyrolyser. Results reveal that the impregnated metals have significant effect on biomass devolatilization. Nickel impregnation increases the organic phase yield and relative amounts of tar in liquid phase. Cobalt impregnation drops cellulose degradation temperature and increases aqueous phase and non-condensable gas yields. Similarly, iron-impregnated biomass produces the highest amounts of biochar. Impregnated metals act as catalysts during pyrolysis and change degradation mechanism by lowering apparent activation energies and by changing thermodynamic parameters. Mean activation energies determined by three different isoconversional methods for normal and Co(II)-, Ni(II)- and F(III)-impregnated biomass are around 240, 197, 183 and 180 kJ.mol−1 respectively and similar to the values calculated by combined kinetic model (CK model). However, Kissinger method–based activation energy of Co(II)-impregnated biomass (295.9 kJ.mol−1) is quite high compared to the values predicted by isoconversional methods (~197 kJ.mol−1) and the CK model (197.7 kJ.mol−1). The observed results can be related to the complex degradation behaviour of Co(II)-impregnated biomass and the limitations on the uses of the Kissinger method in such a complex process. The CK model–based single-step pyrolysis mechanisms of normal and Co(II)-, Ni(II)- and Fe(III)-impregnated biomass are f(α) = (1-α)1.118−1.828, f(α) = (1-α)1.286.α−1.033, f(α) = (1-α)0.8895.α−1.898.[ln(1-α)0.360] and f(α) = (1-α)0.8898.α−1.670.[ln(1-α)0.060] respectively. The single-step CK model poorly explains biomass devolatilization behaviour. However, the same model can explain metal-impregnated biomass pyrolysis quite satisfactorily. Additionally, thermo-kinetic results obtained from various methods adequately explain the results obtained from thermogravimetric and fixed-bed pyrolysis experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arora JS, Chew JW, Musrif SH (2018) Influence of alkali and alkaline-earth metals on the cleavage of glycosidic bond in biomass pyrolysis: a DFT study using cellobiose as a model compound. J Phys Chem A 122:7646–7658. https://doi.org/10.1021/acs.jpca.8b06083

    Article  Google Scholar 

  2. Kabir G, Hamid BH (2017) Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew Sust Energ Rev 70:945–967. https://doi.org/10.1016/j.rser.2016.12.001

    Article  Google Scholar 

  3. Chen J, Liu C, Wu S, Liang J, Lei M (2016) Enhancing the quality of bio-oil from catalytic pyrolysis of kraft black liquor lignin. RSC Adv 6:107970–107976. https://doi.org/10.1039/C6RA18923G

    Article  Google Scholar 

  4. Zhang H, Xiao R, Jin B, Xiao G, Chen R (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262. https://doi.org/10.1016/j.biortech.2013.04.094

    Article  Google Scholar 

  5. Neves D, Thunman H, Matos A, Tarelho L, Gomez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Prog Energy Cobust Sci 37:611–630. https://doi.org/10.1016/j.pecs.2011.01.001

    Article  Google Scholar 

  6. Li R, JZhong JP, Jin JP, Zheng AJ (2012) Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organics productions. Bioresour Technol 119:324–330. https://doi.org/10.1016/j.biortech.2012.05.099

    Article  Google Scholar 

  7. Wang Z, Liu G, Shen D, Wu C, Gu S (2020) Co-pyrolysis of lignin and polyethylene with the addition of transition metals-part I: thermal behaviour and kinetic studies. J Energy Inst 93:281–291. https://doi.org/10.1016/j.joei.2019.03.003

    Article  Google Scholar 

  8. Shuttleworth PS, De Bruyn M, Parker HL, Hunt AJ, Budarin VL, Matharu AS, Clark JH (2014) Applications of nanoparticles in biomass conversion to chemicals and fuels. Green Chem 16:573–584. https://doi.org/10.1039/C3GC41555D

    Article  Google Scholar 

  9. Bru K, Blin J, Julbe A, Volle G (2007) Pyrolysis of metal impregnated biomass: an innovative catalytic way to produce gas fuel. J Anal Appl Pyrolysis 78:291–300. https://doi.org/10.1016/j.jaap.2006.08.006

    Article  Google Scholar 

  10. Nzihou A, Stanmore B, Lyczko N, Minh DP (2019) The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: a review. Energy 170:326–337. https://doi.org/10.1016/j.energy.2018.12.174

    Article  Google Scholar 

  11. Liu Y, Guo F, Li X, Li T, Peng K, Guo C, Chang J (2017) Catalytic effect of iron and nickel on gas formation from fast biomass pyrolysis in a microfluidized bed: a kinetic study. Energy Fuel 31:12278–12287. https://doi.org/10.1021/acs.energyfuels.7b02214

    Article  Google Scholar 

  12. Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–2715. https://doi.org/10.1016/j.rser.2017.09.113

    Article  Google Scholar 

  13. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  14. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328. https://doi.org/10.1021/jp062746a

    Article  Google Scholar 

  15. Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, Xiao B (2016) Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol 219:510–520. https://doi.org/10.1016/j.biortech.2016.07.136

    Article  Google Scholar 

  16. Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66. https://doi.org/10.1016/j.tca.2009.10.003

    Article  Google Scholar 

  17. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparison critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91:1–33. https://doi.org/10.1016/j.jaap.2011.01.004

    Article  Google Scholar 

  18. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  19. Liu WJ, Li WW, Jiang H, Yu HQ (2017) Fates of chemical elements in biomass during its pyrolysis. Chem Rev 117:6367–6398. https://doi.org/10.1021/acs.chemrev.6b00647

    Article  Google Scholar 

  20. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002

    Article  Google Scholar 

  21. Al Chami Z, Amer N, Smets K, Yperman J, Carleer R, Dumontet S, Vangronsveld J (2014) Evaluation of flash and slow pyrolysis applied on heavy metal contaminated Sorghum bicolor shoots resulting from phytoremediation. Biomass Bioenergy 63:268–279. https://doi.org/10.1016/j.biombioe.2014.02.027

    Article  Google Scholar 

  22. Gan DKW, Loy ACM, Chin BLF, Yusup S, Unrean P, Rianawati E, Acda MN (2018) Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts. Bioresour Technol 265:180–190. https://doi.org/10.1016/j.biortech.2018.06.003

    Article  Google Scholar 

  23. Patrick DO, Yusup S, Osman NB, Zabiri H, Uemura Y, Shahbaz M (2020) Thermogravimetric kinetics of catalytic and non-catalytic pyrolytic conversion of palm kernel shell will acid-treated coal bottom ash. BioEnergy Res 13:452–462. https://doi.org/10.1007/s12155-020-10101-2

    Article  Google Scholar 

  24. Wang L, Lei H, Liu J, Bu Q (2018) Thermal decomposition behaviour and kinetics for pyrolysis and catalytic pyrolysis of Douglas fir. RSC Adv 8:2196–2202. https://doi.org/10.1039/C7RA12187C

    Article  Google Scholar 

  25. Konwar K, Nath HP, Bhuyan N, Saikia BK, Borah RC, Kalita AC, Saikia N (2019) Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal. Fuel 256:115926. https://doi.org/10.1016/j.fuel.2019.115926

    Article  Google Scholar 

  26. Gogoi M, Konwar K, Bhuyan N, Borah RC, Kalita AC, Nath H, Saikia N (2018) Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresour Technol Rep 4:40–49. https://doi.org/10.1016/j.biteb.2018.08.016

    Article  Google Scholar 

  27. Eseltine DE (2011) Effect of using inert and non-inert gases on the thermal degradation and fuel properties of biomass in the torrefaction and pyrolysis region. Master’s thesis, Texas A&M University. Available electronically from http://hdl .handle .net /1969 .1 /ETD -TAMU -2011 -12 -10551 (Last access on 31st March, 2021).

  28. Uddin MN, Wan Daud WMA, Abbas HF (2014) Effects of pyrolysis parameters on hydrogen formations from biomass: a review. RSC Adv 4:10467–10490. https://doi.org/10.1039/c3ra43972k

    Article  Google Scholar 

  29. Saikia M, Ali AA, Borah RC, Bezbarua MS, Saikia BK, Saikia N (2018) The effect of biomass types on the co-pyrolysis behaviour of a sub-bituminous high sulphur coal. Energy Ecol Environ 3:251–265. https://doi.org/10.1007/s40974-018-0097-8

    Article  Google Scholar 

  30. Kumar A, Mylapilli SVP, Reddy SN (2019) Thermogravimetric and kinetic studies of metal (Ru/Fe) impregnated banana pseudo-stem (Musa acuminate). Bioresour Technol 285:121318. https://doi.org/10.1016/j.biortech.2019.121318

    Article  Google Scholar 

  31. Kumar A, Reddy SN (2019) In-situ sub- and supercritical water gasification of nano-nickel (Ni2+) impregnated biomass for H2 production. Ind Eng Chem Res 58:4780–4793. https://doi.org/10.1021/acs.iecr.9b00425

    Article  Google Scholar 

  32. Chen D, Zhou J, Zhang Q (2014) Effects of heating rate on slow pyrolysis behaviour, kinetic parameters and products properties of moso bamboo. Bioresour Technol 169:313–319. https://doi.org/10.1016/j.biortech.2014.07.009

    Article  Google Scholar 

  33. Morali U, Yavuzel N, Sensoz S (2016) Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and biochar. Bioresour Technol 221:682–685. https://doi.org/10.1016/j.biortech.2016.09.081

    Article  Google Scholar 

  34. Hassan NS, Jalil AA, Hitam CNC, Vo DVN, Nabgan W (2020) Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review. Environ Chem Lett 18:1625–1648. https://doi.org/10.1007/s10311-020-01040-7

    Article  Google Scholar 

  35. Yu Y, Liu D, Wu H (2014) Formation and characteristics of reaction intermediates from the fast pyrolysis of NaCl- and MgCl2-loaded celluloses. Energy Fuel 28:245–253. https://doi.org/10.1021/ef401483u

    Article  Google Scholar 

  36. Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942. https://doi.org/10.1016/S0014-3057(00)00211-1

    Article  Google Scholar 

  37. Mettler MS, Vlachos DG, Dauenhauer PJ (2012) Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci 5:7797–7809. https://doi.org/10.1039/C2EE21679E

    Article  Google Scholar 

  38. Akubo K, Nahil MA, Williams PT (2019) Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J Energy Inst 92:1987–1996. https://doi.org/10.1016/j.joei.2018.10.013

    Article  Google Scholar 

  39. Sun Z, Chen S, Russell CK, Hu J, Rony AH, Tan G, Chen A, Duan L, Boman J, Tang J, Chien T, Fan M, Xiang W (2018) Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: investigation of inner looping redox reaction and promoting mechanisms. Appl Energy 212:931–943. https://doi.org/10.1016/j.apenergy.2017.12.087

    Article  Google Scholar 

  40. Nisar J, Ali F, Malana MA, Ali G, Iqbal M, Shah A, Bhati IA, Khan TA, Rashid U (2019) Kinetics of the biomass pyrolysis co-impregnated sesame stalk biomass. Biomass Conver Bioref (No paper number) 10:1179–1187. https://doi.org/10.1007/s13399-019-00477-3

    Article  Google Scholar 

  41. Guan G, Kaewpanha M, Hao X, Abudula A (2016) Catalytic steam reforming of biomass tar: prospects and challenges. Renew Sustain Energy Rev 58:450–461. https://doi.org/10.1016/j.rser.2015.12.316

    Article  Google Scholar 

  42. Chattopadhyay J, Pathak TS, Srivastava R, Singh AC (2016) Catalytic co-pyrolysis of paper biomass and plastic mixtures HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate) and product analysis. Energy 103:513–521. https://doi.org/10.1016/j.energy.2016.03.015

    Article  Google Scholar 

  43. Ilipoulou EF, Triantafyllidis KS, Lappas AA (2019) Overview of catalytic upgrading of biomass pyrolysis vapours toward the production of fuels and high-value chemicals. WIRE Energy Environ 8:e322. https://doi.org/10.1002/wene.322

    Article  Google Scholar 

  44. Volli V, Singh RK (2013) Pyrolysis kinetics of de-oiled cakes by thermogravimetric analysis. J Renew Sus Energy 5:033130. https://doi.org/10.1063/1.4811794

    Article  Google Scholar 

  45. Fushimi C, Araki A, Yamaguchi Y, Tsutsumi A (2003) Effect of heating rate on steam gasification of biomass. 1. Reactivity of char. Ind Eng Chem Res 42:3922–3928. https://doi.org/10.1021/ie030056c

    Article  Google Scholar 

  46. Carrier M, Auret L, Bridgwater A, Knoetze JH (2016) Using apparent activation energy as a reactivity criterion for biomass pyrolysis. Energy Fuel 30:7834–7831. https://doi.org/10.1021/acs.energyfuels.6b00794

    Article  Google Scholar 

  47. Castro JDS, Da Silva EGP, Virgens CF (2020) Evaluation of models to predict the influence of chemical pretreatment on the peels of Nephelium lappaceum L. based on pyrolysis kinetic parameters obtained using a combined Fraser-Suzuki function and Friedman’s isoconversional method. J Anal Appl Pyrolysis 149:104827. https://doi.org/10.1016/j.jaap.2020.104827

    Article  Google Scholar 

  48. Sobak S, Werle S (2020) Kinetic modelling of waste wood devolatilization based on thermogravimetric data and solar pyrolysis reactor performance. Fuel 261:116459. https://doi.org/10.1016/j.fuel.2019.116459

    Article  Google Scholar 

  49. Zhao R, Wang X, Liu L, Li P, Tian L (2019) Slow pyrolysis characteristics of bamboo subfamily evaluated through kinetics and evolved gas analysis. Bioresour Technol 289:121674

    Article  Google Scholar 

  50. Yan HX, Hou EF, Zhao H, Wang HN, Gao S, Wu M, Jiang W (2016) Pyrolysis kinetics of invasive coastal plant Spartina anglica using thermogravimetric analysis. Energ Source Part A 38:2867–2875

    Article  Google Scholar 

  51. Borsoi C, Junior MAD, Beltrami LVR, Hansen B, Zattera AJ, Catto AL (2019) Effects of alkaline treatment and kinetic analysis of agroindustrial residues from grape stalks and yerba mate fibers. J Therm Anal Calorim 139:3275–3286. https://doi.org/10.1016/j.tca.2017.09.016

    Article  Google Scholar 

  52. Mehmood MA, Ye G, Lou H, Liu C, Malik S, Afzal I, Xu J, Ahmed MS (2017) Pyrolysis and kinetic analysis of Camel grass (Cymbopogan schoenanthus) for bioenergy. Bioresour Technol 228:18–24. https://doi.org/10.1016/j.biortech.2016.12.096

    Article  Google Scholar 

  53. Tinoco I Jr, Sauer K, Wang JC, Puglisi JD (2006) Physical chemistry principles and application in biological sciences, fourth edn. Pearson India Education Services Pvt. Ltd, Noida, ISBN 978 81 317 0975-7, p 384

    Google Scholar 

  54. Loy ACM, Gan DKW, Yusup S, Chin BLF, Lam MK, Shahbaz M, Unrean P, Acda MN, Rianawati E (2018) Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Bioresour Technol 261:213–222. https://doi.org/10.1016/j.biortech.2018.04.020

    Article  Google Scholar 

  55. Lifshitz C (2001) Some recent aspects of unimolecular gas phase ion chemistry. Chem Soc Rev 30:186–192. https://doi.org/10.1039/B005243O

    Article  Google Scholar 

  56. Espenson JH (1981) Chemical kinetics and reaction mechanisms, first edn. McGraw Hill, New Delhi, p 122

    Google Scholar 

  57. Atkins P, De Paula J (2014) Atkin’s physical chemistry, tenth edn. Oxford University Press, New Delhi, p 899

    Google Scholar 

  58. Vuppaladadiyam AK, Memon MZH, Ji G, Raheem A, Jia TZ, Dupont V, Zhao M (2019) Thermal characteristics and kinetic analysis of woody biomass pyrolysis in presence of bifunctional alkali metal ceramics. ACS Sustain Chem Eng 7:238–248. https://doi.org/10.1021/acssuschemeng.8b02967

    Article  Google Scholar 

  59. De Carvalho VS, Tannous K (2017) Thermal decomposition kinetics modeling of energy cane Saccharum robustum. Thermochim Acta 657:56–65. https://doi.org/10.1016/j.tca.2017.09.016

    Article  Google Scholar 

  60. Radojevic M, Jankovic B, Jovanovic V, Stojiljkovic D, Manic N (2018) Comparative pyrolysis kinetics various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS ONE 13:e0206657. https://doi.org/10.1371/journal.pone.0206657

    Article  Google Scholar 

  61. Milan LMR, Vergas FES, Nzihou A (2017) Kinetic analysis of tropical lignocellulosic agrowaste pyrolysis. BioEnerg Res 10:832–845. https://doi.org/10.1007/s12155-017-9844-5

    Article  Google Scholar 

  62. Long Y, Ruan R, Lu X, Lu Y, Su J, Wen Y (2015) TG-FTIR analysis of pyrolusite reduction by major biomass component. Chin J Chem Eng 23:1691–1697. https://doi.org/10.1016/j.cjche.2015.08.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N. Saikia and H. Nath perceived the idea and designed the experiments; H. Nath and N. Bhuyan performed experiments along with B. K. Saikia; N. Saikia analysed the results and determined kinetic parameters along with H. Nath; B.K. Dutta performed numerical analysis; N. Saikia wrote the paper along with H. Nath; B.K. Saikia revised the paper.

Corresponding author

Correspondence to Nabajyoti Saikia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, H.P., Dutta, B.K., Bhuyan, N. et al. A comprehensive study on the transition metal–catalysed pyrolysis kinetics, thermodynamics and mechanisms of bamboo powder. Biomass Conv. Bioref. 13, 5043–5057 (2023). https://doi.org/10.1007/s13399-021-01528-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01528-4

Keywords

Navigation