Skip to main content

Advertisement

Log in

Optimization of the operational parameters for mesophilic biohydrogen production from palm oil mill effluent using enriched mixed culture

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Improvements in biohydrogen production from palm oil mill effluent (POME) has been achieved by optimizing the physicochemical conditions, using an enriched sludge as inoculum. Enrichment of biohydrogen-producing communities in the sludge was first carried out by heat treatment and acclimatization to POME. Response surface methodology (RSM) was then used for optimizing the operational parameters. The factors investigated were temperature, initial pH, and inoculum concentration. The output responses were evaluated based on the biohydrogen yield (YH2), biohydrogen production rate (RH2), and COD removal efficiency. Microbial analysis of the enriched sludge at 100% POME concentration revealed the abundance of the Firmicutes phylum (98%) among the Bacteria population, with Clostridiaceae as the most abundant family. Archaea were inhibited at both 30% and 100% POME concentration. The optimum operational parameters generated by the RSM model were 34.7 °C, pH 5.81, and inoculum size of 14.22% (v/v), with the following predicted outcomes: YH2 of 42.29 mL H2 gCOD−1, RH2 of 106.09 mL L−1 h−1, and COD removal efficiency of 23.66%. Meanwhile, the experimental data generated were as follows: YH2 of 41.18 mL H2 gCOD−1, RH2 of 109 mL L−1 h−1, and COD removal efficiency of 25.96%. The process reliability was further demonstrated in a larger (2.5 L) continuously stirred-tank reactor, with the maximum biohydrogen yield obtained of 282 mL H2 gCOD−1 and COD removal efficiency of 35%. Butyric and acetic acids were the dominant soluble metabolites produced. These findings suggest that the RSM model generated was successfully used to optimize biohydrogen production from POME using enriched anaerobic digested sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sekoai PT, Daramola MO (2017) The potential of dark fermentative bio-hydrogen production from biowaste effluents in South Africa. Int J Renew Energy Res 7(1)

  2. Boboescu IZ, Gherman VD, Lakatos G, Pap B, Bíró T, Maróti G (2016) Surpassing the current limitations of biohydrogen production systems: the case for a novel hybrid approach. Bioresour Technol 204:192–201. https://doi.org/10.1016/j.biortech.2015.12.083

    Article  Google Scholar 

  3. Martinez-Burgos WJ et al (2020) Biohydrogen production in cassava processing wastewater using microbial consortia: process optimization and kinetic analysis of the microbial community. Bioresour Technol 309(January):123331. https://doi.org/10.1016/j.biortech.2020.123331

    Article  Google Scholar 

  4. Chi J, Yu H (2018) Water electrolysis based on renewable energy for hydrogen production. Cuihua Xuebao/Chinese J Catal 39(3):390–394. https://doi.org/10.1016/S1872-2067(17)62949-8

    Article  Google Scholar 

  5. Sivagurunathan P, Sen B, Lin CY (2014) Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition. J Biosci Bioeng 117(2):222–228. https://doi.org/10.1016/j.jbiosc.2013.07.015

    Article  Google Scholar 

  6. do Garritano AN, de Sá LRV, Aguieiras ÉCG, Freire DMG, Ferreira-Leitão VS (2017) Efficient biohydrogen production via dark fermentation from hydrolized palm oil mill effluent by non-commercial enzyme preparation. Int J Hydrog Energy 42(49):29166–29174. https://doi.org/10.1016/j.ijhydene.2017.10.025

    Article  Google Scholar 

  7. Kumari S, Das D (2016) Biologically pre-treated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process. Bioresour Technol 218:1090–1097. https://doi.org/10.1016/j.biortech.2016.07.070

    Article  Google Scholar 

  8. Eker S, Sarp M (2017) Hydrogen gas production from waste paper by dark fermentation: effects of initial substrate and biomass concentrations. Int J Hydrog Energy 42(4):2562–2568. https://doi.org/10.1016/j.ijhydene.2016.04.020

    Article  Google Scholar 

  9. Karadag D, Köroʇlu OE, Ozkaya B, Cakmakci M (2015) A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem 50(2):262–271. https://doi.org/10.1016/j.procbio.2014.11.005

    Article  Google Scholar 

  10. Yang G, Wang J (2019) Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. Bioresour Technol 275:10–18. https://doi.org/10.1016/j.biortech.2018.12.013

    Article  Google Scholar 

  11. Zainal BS, Zinatizadeh AA, Chyuan OH, Mohd NS, Ibrahim S (2018) Effects of process, operational and environmental variables on biohydrogen production using palm oil mill effluent (POME). Int J Hydrog Energy 43(23):10637–10644. https://doi.org/10.1016/j.ijhydene.2017.10.167

    Article  Google Scholar 

  12. Khemkhao M, Nuntakumjorn B, Techkarnjanaruk S, Phalakornkule C (2012) UASB performance and microbial adaptation during a transition from mesophilic to thermophilic treatment of palm oil mill effluent. J Environ Manag 103:74–82. https://doi.org/10.1016/j.jenvman.2012.03.004

    Article  Google Scholar 

  13. Ismail I, Ali M, Aini N, Rahman A, Sau C (2010) Thermophilic biohydrogen production from palm oil mill effluent ( POME) using suspended mixed culture. Biomass Bioenergy 34(1):42–47. https://doi.org/10.1016/j.biombioe.2009.09.009

    Article  Google Scholar 

  14. Mishra P, Thakur S, Singh L, Krishnan S, Sakinah M, Wahid ZA (2017) Fermentative hydrogen production from indigenous mesophilic strain Bacillus anthracis PUNAJAN 1 newly isolated from palm oil mill effluent. Int J Hydrog Energy 42(25):16054–16063. https://doi.org/10.1016/j.ijhydene.2017.05.120

    Article  Google Scholar 

  15. Norfadilah N, Raheem A, Harun R (2016) Bio-hydrogen production from palm oil mill effluent ( POME ): a preliminary study. Int J Hydrog Energy 41(28):11960–11964. https://doi.org/10.1016/j.ijhydene.2016.04.096

    Article  Google Scholar 

  16. Akhbari A, Chuen OC, Zinatizadeh AA, Ibrahim S (2020) Start-up study on biohydrogen from palm oil mill effluent in a pilot-scale reactor received. Proteomics:1–18. https://doi.org/10.1002/clen.202000192.This

  17. Seengenyoung J, Mamimin C, Prasertsan P, O-Thong S (2019) Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic fermentation. Int J Hydrog Energy 44(6):3347–3355. https://doi.org/10.1016/j.ijhydene.2018.08.021

    Article  Google Scholar 

  18. Tanikkul P, Juntarakod P, Pisutpaisal N (2019) Optimization of biohydrogen production of palm oil mill effluent by ozone pretreatment. Int J Hydrog Energy 44(11):5203–5211. https://doi.org/10.1016/j.ijhydene.2018.09.063

    Article  Google Scholar 

  19. Rasdi Z, Mumtaz T, Abdul Rahman N, Hassan MA (2012) Kinetic analysis of biohydrogen production from anaerobically treated POME in bioreactor under optimized condition. Int J Hydrog Energy 37(23):17724–17730. https://doi.org/10.1016/j.ijhydene.2012.08.095

    Article  Google Scholar 

  20. Saraphirom P, Reungsang A (2010) Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int J Hydrog Energy 35(24):13435–13444. https://doi.org/10.1016/j.ijhydene.2009.11.122

    Article  Google Scholar 

  21. Osman AI, Deka TJ, Baruah DC, Rooney DW (2020) Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Convers. Biorefinery, doi: https://doi.org/10.1007/s13399-020-00965-x

  22. Chong PS, Jahim JM, Harun S, Lim SS, Mutalib SA, Hassan O, Nor MTM (2013) Enhancement of batch biohydrogen production from prehydrolysate of acid treated oil palm empty fruit bunch. Int J Hydrog Energy 38(22):9592–9599. https://doi.org/10.1016/j.ijhydene.2013.01.154

    Article  Google Scholar 

  23. Abdullah MF, Md Jahim J, Abdul PM, Mahmod SS (2020) Effect of carbon/nitrogen ratio and ferric ion on the production of biohydrogen from palm oil mill effluent (POME). Biocatal Agric Biotechnol 23(November 2019):101445. https://doi.org/10.1016/j.bcab.2019.101445

    Article  Google Scholar 

  24. Ghimire A, Luongo V, Frunzo L, Pirozzi F, Lens PNL, Esposito G (2017) Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: use of buffalo manure as buffering agent. Int J Hydrog Energy 42(8):4861–4869. https://doi.org/10.1016/j.ijhydene.2016.11.185

    Article  Google Scholar 

  25. Arslan C, Sattar A, Ji C, Sattar S, Yousaf K, Hashim S (2015) Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling. Biogeosciences 12(21):6503–6514. https://doi.org/10.5194/bg-12-6503-2015

    Article  Google Scholar 

  26. Perna V, Castelló E, Wenzel J, Zampol C, Fontes Lima DM, Borzacconi L, Varesche MB, Zaiat M, Etchebehere C (2013) Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. Int J Hydrog Energy 38(1):54–62. https://doi.org/10.1016/j.ijhydene.2012.10.022

    Article  Google Scholar 

  27. Khongkliang P, Jehlee A, Kongjan P, Reungsang A, O-Thong S (2019) High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. Int J Hydrog Energy 44(60):31841–31852. https://doi.org/10.1016/j.ijhydene.2019.10.022

    Article  Google Scholar 

  28. Krishnan S, Singh L, Sakinah M, Thakur S, Wahid ZA, Alkasrawi M (2016) Process enhancement of hydrogen and methane production from palm oil mill effluent using two-stage thermophilic and mesophilic fermentation. Int J Hydrog Energy 41(30):12888–12898. https://doi.org/10.1016/j.ijhydene.2016.05.037

    Article  Google Scholar 

  29. Lin CY, Lay CH, Sen B, Chu CY, Kumar G, Chen CC, Chang JS (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37(20):15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072

    Article  Google Scholar 

  30. Akhlaghi M, Boni MR, de Gioannis G, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D (2017) A parametric response surface study of fermentative hydrogen production from cheese whey. Bioresour Technol 244:473–483. https://doi.org/10.1016/j.biortech.2017.07.158

    Article  Google Scholar 

  31. Iyer P, Bruns MA, Zhang H, Van Ginkel S, Logan BE (2004) H2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66(2):166–173. https://doi.org/10.1007/s00253-004-1666-7

    Article  Google Scholar 

  32. Mishra P, Ameen F, Zaid RM, Singh L, Wahid ZA, Islam MA, Gupta A, al Nadhari S (2019) Relative effectiveness of substrate-inoculum ratio and initial pH on hydrogen production from palm oil mill effluent: kinetics and statistical optimization. J Clean Prod 228:276–283. https://doi.org/10.1016/j.jclepro.2019.04.317

    Article  Google Scholar 

  33. Sreela-Or C, Imai T, Plangklang P, Reungsang A (2011) Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int J Hydrog Energy 36(21):14120–14133. https://doi.org/10.1016/j.ijhydene.2011.04.136

    Article  Google Scholar 

  34. Chattoraj S, Sadhukhan B, Mondal NK (2013) Predictability by box–Behnken model for carbaryl adsorption by soils of Indian origin. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 48(8):626–636. https://doi.org/10.1080/03601234.2013.777283

    Article  Google Scholar 

  35. Chong M et al (2009) Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int J Hydrog Energy 34(17):7475–7482. https://doi.org/10.1016/j.ijhydene.2009.05.088

    Article  Google Scholar 

  36. Mohammadi P, Ibrahim S, Mohamad Annuar MS (2012) Effects of biomass, COD and bicarbonate concentrations on fermentative hydrogen production from POME by granulated sludge in a batch culture. Int J Hydrog Energy 37(23):17801–17808. https://doi.org/10.1016/j.ijhydene.2012.08.110

    Article  Google Scholar 

  37. Azman NF, Abdeshahian P, Al-Shorgani NKN, Hamid AA, Kalil MS (2016) Production of hydrogen energy from dilute acid-hydrolyzed palm oil mill effluent in dark fermentation using an empirical model. Int J Hydrog Energy 41(37):16373–16384. https://doi.org/10.1016/j.ijhydene.2016.05.085

    Article  Google Scholar 

  38. Jamali NS, Jahim JM (2016) Optimization of thermophilic biohydrogen production by microflora of palm oil mill effluent: cell attachment on granular activated carbon as support media. Malaysian J Anal Sci 20(6):1437–1446. https://doi.org/10.17576/mjas-2016-2006-24

    Article  Google Scholar 

  39. Rasdi Z, Rahman NAA, Abd-Aziz S, Lai-Yee P, Zulkhairi M, Yusoff M, Mei-Ling C, Ali Hassan M (2009) Statistical optimization of biohydrogen production from palm oil mill effluent by natural microflora. Open Biotechnol J 3:79–86

    Article  Google Scholar 

  40. O-Thong S, Mamimin C, Prasertsan P (2011) Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: long-term evaluation and microbial community analysis. Electron J Biotechnol 14(5):60–70. https://doi.org/10.2225/vol14-issue5-fulltext-9

    Article  Google Scholar 

  41. Krishnan S, Singh L, Sakinah M, Thakur S, Wahid ZA, Sohaili J (2016) Effect of organic loading rate on hydrogen ( H 2) and methane ( CH 4) production in two-stage fermentation under thermophilic conditions using palm oil mill ef fl uent ( POME ). Energy Sustain Dev 34:130–138. https://doi.org/10.1016/j.esd.2016.07.002

    Article  Google Scholar 

  42. Fan Y, Li C, Lay JJ, Hou H, Zhang G (2004) Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour Technol 91(2):189–193. https://doi.org/10.1016/S0960-8524(03)00175-5

    Article  Google Scholar 

  43. Badiei M, Jahim JM, Anuar N, Sheikh Abdullah SR, Su LS, Kamaruzzaman MA (2012) Microbial community analysis of mixed anaerobic microflora in suspended sludge of ASBR producing hydrogen from palm oil mill effluent. Int J Hydrog Energy 37(4):3169–3176. https://doi.org/10.1016/j.ijhydene.2011.11.063

    Article  Google Scholar 

  44. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):1–11. https://doi.org/10.1093/nar/gks808

    Article  Google Scholar 

  45. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  Google Scholar 

  46. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  Google Scholar 

  47. Yossan S, O-Thong S, Prasertsan P (2012) Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities. Int J Hydrog Energy 37(18):13806–13814. https://doi.org/10.1016/j.ijhydene.2012.03.151

    Article  Google Scholar 

  48. APHA (2005) Standard methods for the examinaion of water and wastewater, 19th ed. Amerian Public health Association, New York

    Google Scholar 

  49. Soares LA, Rabelo CABS, Sakamoto IK, Delforno TP, Silva EL, Varesche MBA (2018) Metagenomic analysis and optimization of hydrogen production from sugarcane bagasse. Biomass Bioenergy 117(January):78–85. https://doi.org/10.1016/j.biombioe.2018.07.018

    Article  Google Scholar 

  50. Prasertsan P, O-Thong S, Birkeland NK (2009) Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process. Int J Hydrog Energy 34(17):7448–7459. https://doi.org/10.1016/j.ijhydene.2009.04.075

    Article  Google Scholar 

  51. vZhu H, Béland M (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge 31, 1980–1988, doi: https://doi.org/10.1016/j.ijhydene.2006.01.019

  52. Kim DH et al. (2020) Shift of microbial community structure by substrate level in dynamic membrane bioreactor for biohydrogen production. Int J Energy Res no. June, 1–9. doi: https://doi.org/10.1002/er.5737

  53. Solli L, Håvelsrud OE, Horn SJ, Rike AG (2014) A metagenomic study of the microbial communities in four parallel biogas reactors. Biotechnol Biofuels 7(1):1–15. https://doi.org/10.1186/s13068-014-0146-2

    Article  Google Scholar 

  54. Sundberg C, al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626. https://doi.org/10.1111/1574-6941.12148

    Article  Google Scholar 

  55. Zhang K et al. (2020) Genome-centered metagenomics analysis reveals the microbial interactions of a syntrophic consortium during methane generation in a decentralized wastewater treatment system. Appl Sci 10(1), doi: https://doi.org/10.3390/app10010135

  56. Guo J, Peng Y, Ni BJ, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Factories 14(1):1–11. https://doi.org/10.1186/s12934-015-0218-4

    Article  Google Scholar 

  57. Marone A, Izzo G, Mentuccia L, Massini G, Paganin P, Rosa S, Varrone C, Signorini A (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13. https://doi.org/10.1016/j.renene.2014.01.013

    Article  Google Scholar 

  58. Maintinguer SI, Fernandes BS, Duarte ICS, Saavedra NK, Adorno MAT, Varesche MB (2008) Fermentative hydrogen production by microbial consortium. Int J Hydrog Energy 33(16):4309–4317. https://doi.org/10.1016/j.ijhydene.2008.06.053

    Article  Google Scholar 

  59. Garcia-Peña EI, Parameswaran P, Kang DW, Canul-Chan M, Krajmalnik-Brown R (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour Technol 102(20):9447–9455. https://doi.org/10.1016/j.biortech.2011.07.068

    Article  Google Scholar 

  60. Cabrol L, Marone A, Tapia-Venegas E, Steyer JP, Ruiz-Filippi G, Trably E (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 41(2):158–181. https://doi.org/10.1093/femsre/fuw043

    Article  Google Scholar 

  61. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC (2019) Production of bio-hydrogen from dairy wastewater using pre-treated landfill leachate sludge as an inoculum. J Biosci Bioeng 127(2):150–159. https://doi.org/10.1016/j.jbiosc.2018.07.012

    Article  Google Scholar 

  62. Stavropoulos KP, Kopsahelis A, Zafiri C, Kornaros M (2016) Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste and Biomass Valorization 7(4):753–764. https://doi.org/10.1007/s12649-016-9548-7

    Article  Google Scholar 

  63. Tapia-Venegas E, Ramirez-Morales JE, Silva-Illanes F, Toledo-Alarcón J, Paillet F, Escudie R, Lay CH, Chu CY, Leu HJ, Marone A, Lin CY, Kim DH, Trably E, Ruiz-Filippi G (2015) Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev Environ Sci Biotechnol 14(4):761–785. https://doi.org/10.1007/s11157-015-9383-5

    Article  Google Scholar 

  64. Luo Y, Zhang H, Salerno M, Logan BE, Bruns MA (2008) Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production. Int J Hydrog Energy 33(22):6566–6576. https://doi.org/10.1016/j.ijhydene.2008.08.047

    Article  Google Scholar 

  65. Beckers L, Hiligsman S, Masset J, Hamilton C, Thonart P (2012) Effects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor. Energy Procedia 29:34–41. https://doi.org/10.1016/j.egypro.2012.09.006

    Article  Google Scholar 

  66. Argun H, Dao S (2017) Bio-hydrogen production from waste peach pulp by dark fermentation: effect of inoculum addition. Int J Hydrog Energy 42(4):2569–2574. https://doi.org/10.1016/j.ijhydene.2016.06.225

    Article  Google Scholar 

  67. Gadhe A, Sonawane SS, Varma MN (2013) Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach. Int J Hydrog Energy 38(16):6607–6617. https://doi.org/10.1016/j.ijhydene.2013.03.078

    Article  Google Scholar 

  68. Singh L, Wahid ZA (2015) Enhancement of hydrogen production from palm oil mill ef fl uent via cell immobilisation technique. Int J Energy Res 39:215–222. https://doi.org/10.1002/er.3231

    Article  Google Scholar 

  69. Wang J, Wan W (2008) Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrog Energy 33(20):5392–5397. https://doi.org/10.1016/j.ijhydene.2008.07.010

    Article  Google Scholar 

  70. Abdallah R, Djelal H, Amrane A, Sayed W, Fourcade F, Labasque T, Geneste F, Taha S, Floner D (2016) Dark fermentative hydrogen production by anaerobic sludge growing on glucose and ammonium resulting from nitrate electroreduction. Int J Hydrog Energy 41(12):5445–5455. https://doi.org/10.1016/j.ijhydene.2016.02.030

    Article  Google Scholar 

  71. Humbird D, Fei Q (2016) Scale-up considerations for biofuels. Elsevier B.V

  72. Mohammadi P, Ibrahim S, Annuar MSM, Khashij M, Mousavi SA, Zinatizadeh A (2017) Optimisation of fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket fixed film bioreactor. Sustain Environ Res 27(5):238–244. https://doi.org/10.1016/j.serj.2016.04.015

  73. Maaroff RM, Md Jahim J, Azahar AM, Abdul PM, Masdar MS, Nordin D, Abd Nasir MA (2019) Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. Int J Hydrog Energy 44:3395–3406. https://doi.org/10.1016/j.ijhydene.2018.06.013

    Article  Google Scholar 

  74. Lutpi NA, Md Jahim J, Mumtaz T, Harun S, Abdul PM (2016) Batch and continuous thermophilic hydrogen fermentation of sucrose using anaerobic sludge from palm oil mill effluent via immobilisation technique. Process Biochem 51(2):297–307. https://doi.org/10.1016/j.procbio.2015.11.031

    Article  Google Scholar 

  75. Li Y, Zhang X, Xu H, Mu H, Hua D, Jin F, Meng G (2019) Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: effect of pH. J Biosci Bioeng 128(1):50–55. https://doi.org/10.1016/j.jbiosc.2018.12.009

    Article  Google Scholar 

  76. Arooj MF, Han SK, Kim SH, Kim DH, Shin HS (2008) Continuous biohydrogen production in a CSTR using starch as a substrate. Int J Hydrog Energy 33(13):3289–3294. https://doi.org/10.1016/j.ijhydene.2008.04.022

    Article  Google Scholar 

  77. Kanniah Goud R, Arunasri K, Yeruva DK, Krishna KV, Dahiya S, Mohan SV (2017) Impact of selectively enriched microbial communities on long-term fermentative biohydrogen production. Bioresour Technol 242:253–264. https://doi.org/10.1016/j.biortech.2017.03.147

    Article  Google Scholar 

  78. Chen Y, Jiang X, Xiao K, Shen N, Zeng RJ, Zhou Y (2017) Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase—investigation on dissolved organic matter transformation and microbial community shift. Water Res 112:261–268. https://doi.org/10.1016/j.watres.2017.01.067

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Universiti Teknologi Malaysia Tier 1 Research University Grant no. 19H14 and Transdisciplinary Research Grant no. 05G24. The authors gratefully acknowledged Felda Kulai Palm Oil Mill, and Sedenak Palm Oil Mill, Johor, for assistance with POME and sludge sample collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Firdaus Abdul-Wahab.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Audu, J.O., Ibrahim, N., Ibrahim, Z. et al. Optimization of the operational parameters for mesophilic biohydrogen production from palm oil mill effluent using enriched mixed culture. Biomass Conv. Bioref. 13, 4915–4931 (2023). https://doi.org/10.1007/s13399-021-01488-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01488-9

Keywords

Navigation