Skip to main content

Advertisement

Log in

Biodiesel production from non-edible high acid value phoenix seed oil using a cheap immobilized lipase

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Fatty acid methyl ester (FAME) is one kind of renewable and biodegradable biodiesel energy. In this work, in order to decrease FAME production cost, a cheap immobilized lipase Lipozyme TLIM (Thermomyces lanuginosus lipase, 100$/kg) and waste phoenix seed (Firmiana platanifolia (L. f.) Marsili) oil with high free fatty acids (FFA) content (30.1 ± 0.4%) were used as catalyst and new feedstock, respectively. The effects of reaction variables were evaluated and optimized by response surface methodology. Results showed that Lipozyme TLIM can simultaneously catalyze the esterification and transesterification of high FFA phoenix seed oil to produce FAME. The conditions were optimized as follows: 11.8% water load added, 3.1:1 molar ratio of CH3OH to oil, and 7% lipase load at 33 °C for 6.47 h. High FAME yield (93.3 ± 1.6%) was achieved under the optimized conditions. Kinetic values (Vm and Km) of FAME production were 2.66 × 10−2 mol/(L·min) and 7.4 mol/L, respectively, and the activation energy (Ea) was 42.62 kJ/mol. Therefore, a cheap immobilized lipase Lipozyme TLIM with a noted high level of tolerance of water could be useful in the industrial FAME production from phoenix seed oil with high FFA. After purified by molecular distillation, the contents of FAME, FFA, and water content of the final biodiesel product were 97.2%, 0.3%, and 0.04%, which were in accord with the quality standard of ASTM D6751 (>96.5%, <0.4%, and < 0.05%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9

Similar content being viewed by others

References

  1. Demirbas A (2016) Biodiesel from corn germ oil catalytic and non-catalytic supercritical methanol transesterification. Energ Source Part A 38:1890–1897. https://doi.org/10.1080/15567036.2015.1004388

    Article  Google Scholar 

  2. Mathews JA (2008) Carbon-negative biofuels. Energy Policy 36:940–945. https://doi.org/10.1016/j.enpol.2007.11.029

    Article  Google Scholar 

  3. Robles-Medina A, Gonzalez-Moreno PA, Esteban-Cerdan L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408. https://doi.org/10.1016/j.biotechadv.2008.10.008

    Article  Google Scholar 

  4. Ferrero GO, Rojas HJ, Argarana CE, Eimer GA (2016) Towards sustainable biofuel production: design of a new biocatalyst to biodiesel synthesis from waste oil and commercial ethanol. J Clean Prod 139:495–503. https://doi.org/10.1016/j.jclepro.2016.08.047

    Article  Google Scholar 

  5. Vasudevan PT, Briggs M (2008) Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430. https://doi.org/10.1007/s10295-008-0312-2

    Article  Google Scholar 

  6. Khiari K, Tarabet L, Awad S, Loubar K, Mahmoud R, Tazerout M, Derradji M (2020) Optimization of bio-oil production from Pistacia lentiscus seed liquefaction and its effect on diesel engine performance and pollutant emissions. Biomass Conver Bioref. https://doi.org/10.1007/s13399-020-00913-9

  7. Rezania S, Oryani B, Park J, Hashemi B, Yadav KK, Kwon EE, Hur J, Cho J (2019) Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers Manag 201:112155. https://doi.org/10.1016/j.enconman.2019.112155

    Article  Google Scholar 

  8. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006

    Article  Google Scholar 

  9. Gebremariam SN, Marchetti JM (2018) Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: techno economic feasibility of different process alternatives. Energy Convers Manag 174:639–648. https://doi.org/10.1016/j.enconman.2018.08.078

    Article  Google Scholar 

  10. Lieb VM, Kleiber C, Metwali EMR, Kadasa NMS, Almaghrabi OA, Steingass CB, Carle R (2020) Fatty acids and triacylglycerols in the seed oils of Saudi Arabian date (Phoenix dactylifera L.) palms. Int J Food Sci Technol 55:1572–1577. https://doi.org/10.1111/ijfs.14383

    Article  Google Scholar 

  11. Gusmao Coutinho DJ, Barbosa MO, Carvalho de Souza RJ, da Silva AS, da Silva SI, de Oliveira AFM (2016) Biodiesel potential of the seed oils from some Brazilian native Euphorbiaceae species. Renew Energy 91:275–281. https://doi.org/10.1016/j.renene.2016.01.064

    Article  Google Scholar 

  12. Xue BJ, Luo J, Zhang F, Fang Z (2014) Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4-Ca2Fe2O5-based catalyst. Energy 68:584–591. https://doi.org/10.1016/j.energy.2014.02.082

    Article  Google Scholar 

  13. Liu Q, Liu YL, Zhang WF, Li C, Wang WJGAS (2012) Firmiana platanifolia seed moisture content and chemical composition analysis and evaluation. Guizhou Agric Sci 40:179–181+200

    Google Scholar 

  14. Sun S, Li X (2016) Physicochemical properties and fatty acid profile of Phoenix tree seed and its oil. J Am Oil Chem Soc 93:1111–1114. https://doi.org/10.1007/s11746-016-2861-2

    Article  Google Scholar 

  15. Chung KH (2010) Transesterification of Camellia japonica and Vemicia fordii seed oils on alkali catalysts for biodiesel production. J Ind Eng Chem 16:506–509. https://doi.org/10.1016/j.jiec.2010.03.007

    Article  Google Scholar 

  16. Moura CVR, Neres HLS, Lima MG, Moura EM, Moita Neto JM, de Oliveira JE, Lima JRO, Sttolin IM, Araujo ECE (2016) Cr/Al Oxide as solid acid catalyst to afford Babassu biodisel. J Braz Chem Soc 27:515–525. https://doi.org/10.5935/0103-5053.20150279

    Article  Google Scholar 

  17. Fonseca JM, Teleken JG, Almeida VD, da Silva C (2019) Biodiesel from waste frying oils: methods of production and purification. Energy Convers Manag 184:205–218. https://doi.org/10.1016/j.enconman.2019.01.061

    Article  Google Scholar 

  18. Birla A, Singh B, Upadhyay SN, Sharma YC (2012) Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour Technol 106:95–100. https://doi.org/10.1016/j.biortech.2011.11.065

    Article  Google Scholar 

  19. Amini Z, Ong HC, Harrison MD, Kusumo F, Mazaheri H, Ilham Z (2017) Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers Manag 132:82–90. https://doi.org/10.1016/j.enconman.2016.11.017

    Article  Google Scholar 

  20. Marchetti JM, Miguel VU, Errazu AF (2007) Heterogeneous esterification of oil with high amount of free fatty acids. Fuel 86:906–910. https://doi.org/10.1016/j.fuel.2006.09.006

    Article  Google Scholar 

  21. Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A Gen 363:1–10. https://doi.org/10.1016/j.apcata.2009.05.021

    Article  Google Scholar 

  22. Belhaj-Ben Romdhane I, Ben Romdhane Z, Bouzid M, Gargouri A, Belghith H (2013) Application of a chitosan-immobilized Talaromyces thermophilus lipase to a batch biodiesel production from waste frying oils. Appl Biochem Biotechnol 171:1986–2002. https://doi.org/10.1007/s12010-013-0449-y

    Article  Google Scholar 

  23. Karmee SK, Linardi D, Lee J, Lin CSK (2015) Conversion of lipid from food waste to biodiesel. Waste Manag 41:169–173. https://doi.org/10.1016/j.wasman.2015.03.025

    Article  Google Scholar 

  24. Razack SA, Duraiarasan S (2016) Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Manag 47:98–104. https://doi.org/10.1016/j.wasman.2015.07.036

    Article  Google Scholar 

  25. Diaz L, Mertes L, Brito A, Rodriguez KE (2020) Valorization of energy crop shells as potential green adsorbents for free fatty acid removal from oils for biodiesel production. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01089-y

  26. Sangkharak K, Mhaisawat S, Rakkan T, Paichid N, Yunu T (2020) Utilization of mixed chicken waste for biodiesel production using single and combination of immobilized lipase as a catalyst. Biomass Conv Bioref:14. https://doi.org/10.1007/s13399-020-00842-7

  27. Amoah J, Quayson E, Hama S, Yoshida A, Hasunuma T, Ogino C, Kondo A (2017) Simultaneous conversion of free fatty acids and triglycerides to biodiesel by immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase. Biotechnol J 12:1600400. https://doi.org/10.1002/biot.201600400

    Article  Google Scholar 

  28. Zhang DH, Lv YQ, Zhi GY, Yuwen LX (2011) Kinetic biosynthesis of L-ascorbyl acetate by immobilized Thermomyces lanuginosus lipase (Lipozyme TLIM). Bioprocess Biosyst Eng 34:1163–1168. https://doi.org/10.1007/s00449-011-0567-2

    Article  Google Scholar 

  29. Huang Y, Zheng H, Yan Y (2010) Optimization of lipase-catalyzed transesterification of lard for biodiesel production using response surface methodology. Appl Biochem Biotechnol 160:504–515. https://doi.org/10.1007/s12010-008-8377-y

    Article  Google Scholar 

  30. Sun S, Liu J, Li X (2018) A novel and rapid method for fatty acid preparation by the lipase-catalyzed hydrolysis of Phoenix tree seeds. 3 Biotech 8:403. https://doi.org/10.1007/s13205-018-1426-5

    Article  Google Scholar 

  31. Firestone D (1998) Official methods and recommended practices of the American oil chemist’ society, 5th edn., AOCS press, Champaign, Methods Ca 5a-40, Cd8b-90, Ce1b-89

  32. De Diego T, Manjon A, Lozano P, Vaultier M, Iborra JL (2011) An efficient activity ionic liquid-enzyme system for biodiesel production. Green Chem 13(2):444–451. https://doi.org/10.1039/c0gc00230e

    Article  Google Scholar 

  33. Saifuddin N, Raziah AZ, Farah HN (2009) Production of biodiesel from high acid value waste cooking oil using an optimized lipase enzyme/acid-catalyzed hybrid process. E-J Chem 6:S485–S495. https://doi.org/10.1155/2009/801756

    Article  Google Scholar 

  34. Jung H, Lee Y, Kim D, Han SO, Kim SW, Lee J, Kim YH, Park C (2012) Enzymatic production of glycerol carbonate from by-product after biodiesel manufacturing process. Enzym Microb Technol 51:143–147. https://doi.org/10.1016/j.enzmictec.2012.05.004

    Article  Google Scholar 

  35. Sun S, Guo J (2018) Enhanced ricinoleic acid preparation using Lipozyme TLIM as a novel biocatalyst: optimized by response surface methodology. Catalysts 8:486. https://doi.org/10.3390/catal8110486

    Article  Google Scholar 

  36. Zhao T, No DS, Kim Y, Kim YS, Kim I-H (2014) Novel strategy for lipase-catalyzed synthesis of biodiesel using blended alcohol as an acyl acceptor. J Mol Catal B Enzym 107:17–22. https://doi.org/10.1016/j.molcatb.2014.05.002

    Article  Google Scholar 

  37. Houde AA, St-Pierre J, Hivert MF, Baillargeon JP, Perron P, Gaudet D, Brisson D, Bouchard L (2014) Placental lipoprotein lipase DNA methylation levels are associated with gestational diabetes mellitus and maternal and cord blood lipid profiles. J Dev Orig Health Dis 5:132–141. https://doi.org/10.1017/s2040174414000038

    Article  Google Scholar 

  38. Salis A, Casula MF, Bhattacharyya MS, Pinna M, Solinas V, Monduzzi M (2010) Physical and chemical lipase adsorption on SBA−15: effect of different interactions on enzyme loading and catalytic performance. ChemCatChem 2:322–329. https://doi.org/10.1002/cctc.200900288

    Article  Google Scholar 

  39. Yadav GD, Devi KMJBEJ (2002) Enzymatic synthesis of perlauric acid using Novozym 435. Biochem Eng J 10:93–101. https://doi.org/10.1016/S1369-703X(01)00164-4

    Article  Google Scholar 

  40. Arumugam A, Ponnusami V (2017) Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon 3:e00486. https://doi.org/10.1016/j.heliyon.2017.e00486

    Article  Google Scholar 

  41. Kulschewski T, Sasso F, Secundo F, Lotti M, Pleiss J (2013) Molecular mechanism of deactivation of C. antarctica lipase B by methanol. J Biotechnol 168:462–469. https://doi.org/10.1016/j.jbiotec.2013.10.012

    Article  Google Scholar 

  42. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315. https://doi.org/10.1002/bit.22256

    Article  Google Scholar 

  43. Cheong L-Z, Tan C-P, Long K, Yusoff MSA, Arifin N, Lo S-K, Lai O-M (2007) Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: optimization using response surface methodology. Food Chem 105:1614–1622. https://doi.org/10.1016/j.foodchem.2007.03.070

    Article  Google Scholar 

  44. Sun S, Wang G, Wang P (2018) A cleaner approach for biodegradable lubricants production by enzymatic glycerolysis of castor oil and kinetic analysis. J Clean Prod 188:530–535. https://doi.org/10.1016/j.jclepro.2018.04.015

    Article  Google Scholar 

  45. Ambat I, Srivastava V, Iftekhar S, Haapaniemi E, Sillanpaa M (2020) Effect of different co-solvents on biodiesel production from various low-cost feedstocks using Sr-Al double oxides. Renew Energy 146:2158–2169. https://doi.org/10.1016/j.renene.2019.08.061

    Article  Google Scholar 

  46. Subhedar PB, Gogate PR (2016) Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrason Sonochem 29:67–75. https://doi.org/10.1016/j.ultsonch.2015.09.006

    Article  Google Scholar 

  47. Sbihi HM, Nehdi IA, El Blidi L, Rashid U, Al-Resayes SI (2015) Lipase/enzyme catalyzed biodiesel production from Prunus mahaleb: a comparative study with base catalyzed biodiesel production. Ind Crop Prod 76:1049–1054. https://doi.org/10.1016/j.indcrop.2015.08.023

    Article  Google Scholar 

  48. Liou YC, Marangoni AG, Yada RYJFRI (1998) Aggregation behavior of Candida rugosa lipase. Food Res Int 31:243–248. https://doi.org/10.1016/S0963-9969(98)00099-4

    Article  Google Scholar 

  49. Foresti ML, Ferreira ML (2005) Frequent analytical/experimental problems in lipase-mediated synthesis in solvent-free systems and how to avoid them. Anal Bioanal Chem 381:1408–1425. https://doi.org/10.1007/s00216-005-3087-6

    Article  Google Scholar 

  50. Pollardo AA, Lee H-s, Lee D, Kim S, Kim J (2018) Solvent effect on the enzymatic production of biodiesel from waste animal fat. J Clean Prod 185:382–388. https://doi.org/10.1016/j.jclepro.2018.02.210

    Article  Google Scholar 

  51. Hama S, Kondo A (2013) Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresour Technol 135:386–395. https://doi.org/10.1016/j.biortech.2012.08.014

    Article  Google Scholar 

  52. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520. https://doi.org/10.1016/j.apenergy.2014.01.017

    Article  Google Scholar 

  53. Bouaid A, Vazquez R, Martinez M, Aracil J (2016) Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel 174:54–62. https://doi.org/10.1016/j.fuel.2016.01.018

    Article  Google Scholar 

  54. Endalew AK, Kiros Y, Zanzi R (2011) Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 35:3787–3809. https://doi.org/10.1016/j.biombioe.2011.06.011

    Article  Google Scholar 

  55. Feyzi M, Shahbazi Z (2017) Preparation, kinetic and thermodynamic studies of Al-Sr nanocatalysts for biodiesel production. J Taiwan Inst Chem Eng 71:145–155. https://doi.org/10.1016/j.jtice.2016.11.023

    Article  Google Scholar 

  56. Deshmane VG, Adewuyi YG (2013) Synthesis and kinetics of biodiesel formation via calcium methoxide base catalyzed transesterification reaction in the absence and presence of ultrasound. Fuel 107:474–482. https://doi.org/10.1016/j.fuel.2012.12.080

    Article  Google Scholar 

  57. Sun S, Li K (2020) Biodiesel production from phoenix tree seed oil catalyzed by liquid lipozyme TL100L. Renew Energy 151:152–160. https://doi.org/10.1016/j.renene.2019.11.006

    Article  Google Scholar 

  58. Zeng D, Yang L, Fang T (2017) Process optimization, kinetic and thermodynamic studies on biodiesel production by supercritical methanol transesterification with CH3ONa catalyst. Fuel 203:739–748. https://doi.org/10.1016/j.fuel.2017.05.019

    Article  Google Scholar 

  59. Feyzi M, Norouzi L (2019) Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production (vol 94, pg 579, 2016). Renew Energy 139:1477–1478. https://doi.org/10.1016/j.renene.2019.03.023

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (31771937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangde Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, K. & Sun, S. Biodiesel production from non-edible high acid value phoenix seed oil using a cheap immobilized lipase. Biomass Conv. Bioref. 13, 3187–3198 (2023). https://doi.org/10.1007/s13399-021-01440-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01440-x

Keywords

Navigation