Skip to main content

Advertisement

Log in

Wastewater treatment and energy production by microbial fuel cells

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The increasing demands of efficient and sustainable energy generation methods from waste products have taken a giant leap in the last century, and especially in the previous two decades. Wastewater treatment has also been a much-researched topic in recent years owing to the exponential increase in effluent-laden wastewater from industries, the agricultural sector and food sector, and its effects on the environment. There have been plenty of wastewater treatment techniques over the years, but most of them lack in terms of cost-effectiveness, durability, and energy recovery rates. Microbial fuel cells can prove to be of great use to tackle both of these issues in one go, as they perform bioelectrochemical processes on organic biodegradable compounds to oxidize them to generate power which can be harnessed by various means. This article explains the aim, construction, mechanism, and application of microbial fuel cells; the economic and scientific challenges that they face in the future; and microbial fuel cell (MFC) hybrid systems which make use of MFCs combined with other useful technologies for greater aims and better efficiencies. It overall discusses the various ways in which MFCs outperform other wastewater treatment technologies by significantly decreasing sludge production and being environment-friendly, and also some limitations and drawbacks that MFCs face owing to the fact that they are relatively newer technologies and still require decades of modifications until they reach excellent output rates. MFCs are known not only for wastewater treatment but also for contaminant removal, heavy metal removal, biohydrogen production, applications in biosensors, etc., as also discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEM:

anion exchange membrane

AFT:

anodic Fenton treatment

ANAMMOX:

anaerobic ammonium oxidation

AQDS:

anthraquinone-2,6-disulphonicsalt

BSA:

bovine serum albumin

BOD:

biological oxygen demand

CEM:

cation exchange membrane

CF:

carbon felt

COD:

chemical oxygen demand

HEPES:

2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

MD:

membrane distillation

MDC:

microbial desalination cell

MEC:

microbial electrolysis cell

MED:

multi-effect distillation

MEDC:

microbial electrolysis desalination cell

MES:

2-Morpholinoethanesulfonic acid

MFC:

microbial fuel cell

MLMFC:

membrane-less microbial fuel cell

MPEC:

microbial photoelectrochemical cell

MSF:

multi-stage flash distillation

OLR:

organic loading rate

PEC:

photoelectrochemical cell

PEM:

proton exchange membrane

PFC:

photocatalytic fuel cells

pH:

power of hydrogen

PIPES:

piperazinediethanesulfonic acid

PPy:

polypyrrole

RO:

reverse osmosis

SLR:

sludge loading rate

UV:

ultraviolet

VSS:

volatile suspended solid

References

  1. James C, Hema Meenal S, Elakkiya S, Logarshani S (2020) Sustainable environment through treatment of domestic sewage using MFC. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.07.110

  2. Sugawara E, Nikaido H (2014) Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli 58:7250–7257

  3. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: From fundamentals to applications. A review. J Power Sources 356:225–244

    Article  Google Scholar 

  4. Pandey P, Shinde VN, Deopurkar RL et al (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723

    Article  Google Scholar 

  5. Agarwal A, Upadhyay U, Sreedhar I et al (2020) A review on valorization of biomass in heavy metal removal from wastewater. J Water Process Eng

  6. Logan BE, Elimelech M (2012) Membrane-based processes for sustainable power generation using water. Nature 488:313–319

    Article  Google Scholar 

  7. Mansor M, Timmiati SN, Lim KL et al (2019) Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction. Int J Hydrog Energy 44:14744–14769

    Article  Google Scholar 

  8. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(80):686–690

    Article  Google Scholar 

  9. Palanisamy G, Jung HY, Sadhasivam T et al (2019) A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod 221:598–621

    Article  Google Scholar 

  10. Slate AJ, Whitehead KA, Brownson DAC, Banks CE (2019) Microbial fuel cells: an overview of current technology. Renew Sust Energ Rev 101:60–81

    Article  Google Scholar 

  11. Do MH, Ngo HH, Guo WS et al (2018) Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci Total Environ 639:910–920

    Article  Google Scholar 

  12. Aghababaie M, Farhadian M, Jeihanipour A, Biria D (2015) Effective factors on the performance of microbial fuel cells in wastewater treatment–a review. Environ Technol Rev 4:71–89

    Article  Google Scholar 

  13. Sreedhar I, Upadhyay U, Roy P et al (2020) Carbon capture and utilization by graphenes-path covered and ahead. J Clean Prod

  14. Flimban SGA, Ismail IMI, Kim T, Oh SE (2019) Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability. Energies 12:12173390

  15. Virdis B, Freguia S, Rozendal RA, et al (2011) Microbial fuel cells. In: Treatise on water science. 641–665

  16. Rahimnejad M, Adhami A, Darvari S et al (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Eng J 54:745–756

    Article  Google Scholar 

  17. Nitisoravut R, Regmi R (2017) Plant microbial fuel cells: a promising biosystems engineering. Renew Sust Energ Rev 76:81–89

    Article  Google Scholar 

  18. Nemeth T, Schröer P, Kuipers M, Sauer DU (2020) Lithium titanate oxide battery cells for high-power automotive applications – electro-thermal properties, aging behavior and cost considerations. J Energy Storage 31:101656

  19. Tatinclaux M, Gregoire K, Leininger A et al (2018) Electricity generation from wastewater using a floating air cathode microbial fuel cell. Water-Energy Nexus. https://doi.org/10.1016/j.wen.2018.09.001

  20. Salar-Garcia MJ, Obata O, Kurt H et al (2020) Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells. Microorganisms 8:1–16

    Article  Google Scholar 

  21. Yaqoob AA, Ibrahim MNM, Rafatullah M et al (2020) Recent advances in anodes for microbial fuel cells: an overview. Materials (Basel) 13:2078

  22. Schneider K, Thorne RJ, Cameron PJ (2016) An investigation of anode and cathode materials in photomicrobial fuel cells. Philos Trans R Soc A Math Phys Eng Sci 374:20150080

  23. Paquin F, Rivnay J, Salleo A et al (2015) Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J Mater Chem C 3:10715–10722

    Article  Google Scholar 

  24. Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98:2568–2577

    Article  Google Scholar 

  25. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  Google Scholar 

  26. Rahimnejad M, Ghoreyshi AA, Najafpour G, Jafary T (2011) Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl Energy 88:3999–4004

    Article  Google Scholar 

  27. Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101:469–475

    Article  Google Scholar 

  28. Ishii S, Watanabe K, Yabuki S et al (2008) Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl Environ Microbiol 74:7348–7355

    Article  Google Scholar 

  29. Zou Y, Xiang C, Yang L et al (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrog Energy 33:4856–4862

    Article  Google Scholar 

  30. Jung RK, Dec J, Bruns MA, Logan BE (2008) Removal of odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol 74:2540–2543

    Article  Google Scholar 

  31. Logan BE, Murano C, Scott K et al (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952

    Article  Google Scholar 

  32. Chakraborty I, Das S, Dubey BK, Ghangrekar MM (2020) Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Mater Chem Phys 239:122025

  33. Lin CW, Wu CH, Chiu YH, Tsai SL (2014) Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel 125:30–35

    Article  Google Scholar 

  34. Yu F, Wang C, Ma J (2016) Applications of graphene-modified electrodes in microbial fuel cells. Materials (Basel):9

  35. Firdous S, Jin W, Shahid N et al (2018) The performance of microbial fuel cells treating vegetable oil industrial wastewater. Environ Technol Innov 10:143–151

    Article  Google Scholar 

  36. Ghadge AN, Jadhav DA, Pradhan H, Ghangrekar MM (2015) Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell. Bioresour Technol 182:225–231

    Article  Google Scholar 

  37. Chouler J, Padgett GA, Cameron PJ et al (2016) Towards effective small scale microbial fuel cells for energy generation from urine. Electrochim Acta 192:89–98

    Article  Google Scholar 

  38. Fu Y, Xu Q, Zai X et al (2014) Low electrical potential anode modified with Fe/ferric oxide and its application in marine benthic microbial fuel cell with higher voltage and power output. Appl Surf Sci 289:472–477

    Article  Google Scholar 

  39. Liu YF, Zhang XL, Li CJ (2020) Advances in carbon-based anode materials for microbial fuel cells. Gongcheng Kexue Xuebao/Chinese J Eng 42:270–277

  40. Sonawane JM, Pant D, Ghosh PC, Adeloju SB (2019) Fabrication of a carbon paper/polyaniline-copper hybrid and its utilization as an air cathode for microbial fuel cells. ACS Appl Energy Mater 2:1891–1902

    Article  Google Scholar 

  41. Abourached C, English MJ, Liu H (2016) Wastewater treatment by microbial fuel cell (MFC) prior irrigation water reuse. J Clean Prod 137:144–149

    Article  Google Scholar 

  42. Liu YF, Zhang XL, Li CJ (2020) Advances in carbon-based anode materials for microbial fuel cells. Gongcheng Kexue Xuebao/Chinese. J Eng Des

  43. Pattanayak P, Pramanik N, Papiya F et al (2020) Metal-free keratin modified poly(pyrrole-co-aniline)-reduced graphene oxide based nanocomposite materials: a promising cathode catalyst in microbial fuel cell application. J Environ Chem Eng 8:103813

  44. Ucar D, Zhang Y, Angelidaki I (2017) An overview of electron acceptors in microbial fuel cells. Front Microbiol 8:00643

  45. Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323

    Article  Google Scholar 

  46. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  Google Scholar 

  47. Deng Q, Li X, Zuo J et al (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195:1130–1135

    Article  Google Scholar 

  48. Ter Heijne A, Hamelers HVM, De Wilde V et al (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205

    Article  Google Scholar 

  49. You S, Zhao Q, Zhang J et al (2008) Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosens Bioelectron 23:1157–1160

    Article  Google Scholar 

  50. Chen GW, Choi SJ, Lee TH et al (2008) Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79:379–388

    Article  Google Scholar 

  51. Papiya F, Pattanayak P, Kumar V et al (2020) Sulfonated graphene oxide and titanium dioxide coated with nanostructured polyaniline nanocomposites as an efficient cathode catalyst in microbial fuel cells. Mater Sci Eng C 108:110498

  52. Tajdid Khajeh R, Aber S, Nofouzi K (2020) Efficient improvement of microbial fuel cell performance by the modification of graphite cathode via electrophoretic deposition of CuO/ZnO. Mater Chem Phys 240:122208

  53. Merino-Jimenez I, Celorrio V, Fermin DJ et al (2017) Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. Water Res 109:46–53

    Article  Google Scholar 

  54. Harnisch F, Schröder U (2009) Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem 2:921–926

    Article  Google Scholar 

  55. Chen Y, Zhao Z, Weng Z, et al (2019) Performance study of polypyrrole-nanowires based microbial fuel cells. In: 2019 3rd International Conference on Circuits, System and Simulation, ICCSS 2019. 235–238

  56. Ghasemi M, Wan Daud WR, Alam J et al (2016) Sulfonated poly ether ether ketone with different degree of sulphonation in microbial fuel cell: application study and economical analysis. Int J Hydrog Energy 41:4862–4871

    Article  Google Scholar 

  57. Asensio Y, Fernandez-Marchante CM, Lobato J et al (2018) Influence of the ion-exchange membrane on the performance of double-compartment microbial fuel cells. J Electroanal Chem 808:427–432

    Article  Google Scholar 

  58. Zhang Y, Liu M, Zhou M et al (2019) Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges. Renew Sust Energ Rev 103:13–29

    Article  Google Scholar 

  59. Choudhury P, Prasad Uday US, Bandyopadhyay TK et al (2017) Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: a review. Bioengineered 8:471–487

    Article  Google Scholar 

  60. Goswami R, Mishra VK (2018) A review of design, operational conditions and applications of microbial fuel cells. Biofuels 9:203–220

    Article  Google Scholar 

  61. Li M, Zhou M, Tian X et al (2018) Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 36:1316–1327

    Article  Google Scholar 

  62. Ramachandran R, Chen SM, peter G k G (2015) Enhancement of different fabricated electrode materials for microbial fuel cell applications: an overview. Int J Electrochem Sci 10:7111–7137

    Google Scholar 

  63. Naina Mohamed S, Thota Karunakaran R, Manickam M (2018) Enhancement of bioelectricity generation from treatment of distillery wastewater using microbial fuel cell. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.12734

  64. Nam JY, Kim HW, Lim KH et al (2010) Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosens Bioelectron 25:1155–1159

    Article  Google Scholar 

  65. Srivastava P, Yadav AK, Mishra BK (2015) The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland. Bioresour Technol 195:223–230

    Article  Google Scholar 

  66. Kim C, Lee CR, Song YE et al (2017) Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater. Chem Eng J 328:703–707

    Article  Google Scholar 

  67. Wu S, Liang P, Zhang C et al (2015) Enhanced performance of microbial fuel cell at low substrate concentrations by adsorptive anode. Electrochim Acta 161:245–251

    Article  Google Scholar 

  68. Saba B, Christy AD, Yu Z, Co AC (2017) Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew Sust Energ Rev 73:75–84

    Article  Google Scholar 

  69. Torres CI, Lee HS, Rittmann BE (2008) Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ Sci Technol 42:8773–8777

    Article  Google Scholar 

  70. Ren H, Jiang C, Chae J (2017) Effect of temperature on a miniaturized microbial fuel cell (MFC). Micro Nano Syst Lett 5:13

  71. Wang XL, Wu C, Zhang JQ, et al (2011) Acclimation stage on the performance of microbial fuel cells subjected to variation in COD, temperature, and electron acceptor. In: Advanced Materials Research 2346–2350

  72. Gadkari S, Fontmorin JM, Yu E, Sadhukhan J (2020) Influence of temperature and other system parameters on microbial fuel cell performance: numerical and experimental investigation. Chem Eng J 388:124176

  73. Uria N, Ferrera I, Mas J (2017) Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol 17:208

  74. Gonzalez del Campo A, Lobato J, Cañizares P et al (2013) Short-term effects of temperature and COD in a microbial fuel cell. Appl Energy 101:213–217

    Article  Google Scholar 

  75. Commault AS, Barrière F, Lapinsonnière L et al (2015) Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms. Bioresour Technol 195:265–272

    Article  Google Scholar 

  76. Patil SA, Harnisch F, Kapadnis B, Schröder U (2010) Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron 26:803–808

    Article  Google Scholar 

  77. Michie IS, Kim JR, Dinsdale RM et al (2011) The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance. Energy Environ Sci 4:1011–1019

    Article  Google Scholar 

  78. Cheng S, Xing D, Logan BE (2011) Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron 26:1913–1917

    Article  Google Scholar 

  79. Oliveira VB, Simões M, Melo LF, Pinto AMFR (2013) Overview on the developments of microbial fuel cells. Biochem Eng J 73:53–64

    Article  Google Scholar 

  80. Behera M, Ghangrekar MM (2009) Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour Technol 100:5114–5121

    Article  Google Scholar 

  81. Martin E, Savadogo O, Guiot SR, Tartakovsky B (2010) The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochem Eng J 51:132–139

    Article  Google Scholar 

  82. Di Lorenzo M, Scott K, Curtis TP, Head IM (2010) Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem Eng J 156:40–48

    Article  Google Scholar 

  83. Velvizhi G, Venkata Mohan S (2012) Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater. Int J Hydrog Energy 37:5969–5978

    Article  Google Scholar 

  84. Moon H, In SC, Jae KJ, Kim BH (2005) Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem Eng J 27:59–65

    Article  Google Scholar 

  85. Aelterman P, Versichele M, Marzorati M et al (2008) Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour Technol 99:8895–8902

    Article  Google Scholar 

  86. Ieropoulos I, Winfield J, Greenman J (2010) Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour Technol 101:3520–3525

    Article  Google Scholar 

  87. Juang DF, Yang PC, Chou HY, Chiu LJ (2011) Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol Lett 33:2147–2160

    Article  Google Scholar 

  88. Herbert-Guillou D, Tribollet B, Festy D (2001) Influence of the hydrodynamics on the biofilm formation by mass transport analysis. Bioelectrochemistry 53:119–125

    Article  Google Scholar 

  89. Pham HT, Boon N, Aelterman P et al (2008) High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microb Biotechnol 1:487–496

    Article  Google Scholar 

  90. Rickard AH, McBain AJ, Stead AT, Gilbert P (2004) Shear rate moderates community diversity in freshwater biofilms. Appl Environ Microbiol 70:7426–7435

    Article  Google Scholar 

  91. Rochex A, Godon JJ, Bernet N, Escudié R (2008) Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Res 42:4915–4922

    Article  Google Scholar 

  92. Gajda I, Greenman J, Melhuish C, Ieropoulos I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 82:87–93

    Article  Google Scholar 

  93. Li J, Yang W, Zhang B, et al (2018) Electricity from microbial fuel cells. Green Energy and Technology 54:745–756

  94. Tharali AD, Sain N, Osborne WJ (2016) Microbial fuel cells in bioelectricity production. Front Life Sci 9:252–266

    Article  Google Scholar 

  95. Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160–167

  96. Min B, Kim JR, Oh SE et al (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  Google Scholar 

  97. Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78:531–537

    Article  Google Scholar 

  98. Jafary T, Wan Daud WR, Ghasemi M et al (2019) Clean hydrogen production in a full biological microbial electrolysis cell. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2018.01.010

  99. Hu J, Zhang Q, Lee DJ, Ngo HH (2018) Feasible use of microbial fuel cells for pollution treatment. Renew Energy. https://doi.org/10.1016/j.renene.2017.02.001

  100. Habermann W, Pommer EH (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35:128–133

    Article  Google Scholar 

  101. Naina Mohamed S, Ajit Hiraman P, Muthukumar K, Jayabalan T (2020) Bioelectricity production from kitchen wastewater using microbial fuel cell with photosynthetic algal cathode. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122226

  102. Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924

    Article  Google Scholar 

  103. Yu D, Wang G, Xu F et al (2013) Electricity generation from artificial wastewater using an upflow microbial fuel cell electricity generation from artificial wastewater using an upflow microbial fuel cell. Bioresour Technol 39:5262–5267

    Google Scholar 

  104. Kumar SS, Kumar V, Malyan SK et al (2019) Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel. https://doi.org/10.1016/j.fuel.2019.05.109

  105. Xu P, Xu H, Shi Z (2018) A novel bio-electro-Fenton process with FeVO4/CF cathode on advanced treatment of coal gasification wastewater. Sep Purif Technol 194:457–461

    Article  Google Scholar 

  106. Miran W, Nawaz M, Jang J, Lee DS (2016) Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Sci Total Environ 547:197–205

    Article  Google Scholar 

  107. Kumar SS, Kumar V, Kumar R et al (2019) Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel. https://doi.org/10.1016/j.fuel.2019.115682

  108. Lee H, Yang W, Wei X, et al (2015) A microsized microbial fuel cell based biosensor for fast and sensitive detection of toxic substances in water. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 573–576

  109. Felix FS, Angnes L (2018) Electrochemical immunosensors – a powerful tool for analytical applications. Biosens Bioelectron 102:470–478

    Article  Google Scholar 

  110. Rocchitta G, Spanu A, Babudieri S et al (2016) Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors (Switzerland) 16:780

  111. Mehrotra P (2016) Biosensors and their applications - a review. J Oral Biol Craniofacial Res 6:153–159

    Article  Google Scholar 

  112. Justino CIL, Gomes AR, Freitas AC et al (2017) Graphene based sensors and biosensors. Trends Anal Chem 91:53–66

    Article  Google Scholar 

  113. Gerritsen M, Jansen JA, Lutterman JA (1999) Performance of subcutaneously implanted glucose sensors for continuous monitoring. Neth J Med 54:167–179

    Article  Google Scholar 

  114. Yang W, Wei X, Fraiwan A et al (2016) Fast and sensitive water quality assessment: a μl-scale microbial fuel cell-based biosensor integrated with an air-bubble trap and electrochemical sensing functionality. Sensors Actuators B Chem 226:191–195

    Article  Google Scholar 

  115. Zhuang L, Zhou S, Li Y et al (2010) In situ Fenton-enhanced cathodic reaction for sustainable increased electricity generation in microbial fuel cells. J Power Sources 195:1379–1382

    Article  Google Scholar 

  116. Lu A, Li Y, Jin S et al (2012) Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun 3:105497

  117. Morel A, Zuo K, Xia X et al (2012) Microbialdesalination cells packed with ion-exchange resin to enhance water desalination rate. Bioresour Technol 118:243–248

  118. Sun M, Sheng GP, Mu ZX et al (2009) Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system. J Power Sources 191:338–343

    Article  Google Scholar 

  119. Ardakani MN, Badalians Gholikandi G (2020) Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery -a state-of-the-art review. Biomass Bioenergy 141:105726

  120. Nordin N, Ho LN, Ong SA et al (2017) Hybrid system of photocatalytic fuel cell and Fenton process for electricity generation and degradation of Reactive Black 5. Sep Purif Technol 177:135–141

    Article  Google Scholar 

  121. Feng CH, Li FB, Mai HJ, Li XZ (2010) Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol 44:1875–1880

    Article  Google Scholar 

  122. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755

    Article  Google Scholar 

  123. Zhu X, Ni J (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem Commun 11:274–277

    Article  Google Scholar 

  124. Singh HM, Pathak AK, Chopra K et al (2019) Microbial fuel cells: a sustainable solution for bioelectricity generation and wastewater treatment. Biofuels. https://doi.org/10.1080/17597269.2017.1413860

  125. Chen JY, Zhao L, Li N, Liu H (2015) A microbial fuel cell with the three-dimensional electrode applied an external voltage for synthesis of hydrogen peroxide from organic matter. J Power Sources 287:291–296

    Article  Google Scholar 

  126. Ramirez JH, Costa CA, Madeira LM et al (2007) Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl Catal B Environ 71:44–56

    Article  Google Scholar 

  127. Zhao K, Zeng Q, Bai J et al (2017) Enhanced organic pollutants degradation and electricity production simultaneously via strengthening the radicals reaction in a novel Fenton-photocatalytic fuel cell system. Water Res 108:293–300

    Article  Google Scholar 

  128. Zhu X, Logan BE (2013) Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. J Hazard Mater 252–253:198–203

    Article  Google Scholar 

  129. de DMAF, Iglesias O, Bocos E et al (2014) Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation. J Ind Eng Chem 20:3754–3760

    Article  Google Scholar 

  130. Xu H, Quan X, Xiao Z, Chen L (2018) Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem Eng J 335:539–547

  131. Zhang Y, Wang Y, Angelidaki I (2015) Alternate switching between microbial fuel cell and microbial electrolysis cell operation as a new method to control H2O2 level in Bioelectro-Fenton system. J Power Sources 291:108–116

    Article  Google Scholar 

  132. Zhang L, Yin X, Li SFY (2015) Bio-electrochemical degradation of paracetamol in a microbial fuel cell-Fenton system. Chem Eng J 276:185–192

    Article  Google Scholar 

  133. Luo Y, Zhang R, Liu G et al (2011) Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour Technol 102:3827–3832

    Article  Google Scholar 

  134. Feng C, Ma L, Li F et al (2010) A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25:1516–1520

    Article  Google Scholar 

  135. Feng C, Li F, Liu H et al (2010) A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process. Electrochim Acta 55:2048–2054

    Article  Google Scholar 

  136. Yong XY, Gu DY, Wu YD et al (2017) Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation. J Hazard Mater 324:178–183

    Article  Google Scholar 

  137. Yuan GE, Li Y, Lv J et al (2017) Integration of microbial fuel cell and catalytic oxidation reactor with iron phthalocyanine catalyst for Congo red degradation. Biochem Eng J 120:118–124

    Article  Google Scholar 

  138. Kment SK, Naldoni A et al (2020) FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Prog Mater Sci

  139. Lianos P (2017) Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Appl Catal B Environ 210:235–254

    Article  Google Scholar 

  140. Antolini E (2019) Photoelectrocatalytic fuel cells and photoelectrode microbial fuel cells for wastewater treatment and power generation. J Environ Chem Eng 7:103241

    Article  Google Scholar 

  141. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27:991–1022

    Article  Google Scholar 

  142. Wang Y, Zu M, Zhou X et al (2020) Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chem Eng J

  143. Fischer F (2018) Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renew Sust Energ Rev 90:16–27

    Article  Google Scholar 

  144. Fu S, Deng B, Ma D et al (2018) Visible-light-driven photocatalytic fuel cell with an Ag-TiO2 carbon foam anode for simultaneous 4-chlorophenol degradation and energy recovery. ChemEngineering 2:1–10

    Article  Google Scholar 

  145. Yu T, Liu L, Li L, Yang F (2016) A self-biased fuel cell with TiO2/g-C3N4 anode catalyzed alkaline pollutant degradation with light and without light - what is the degradation mechanism? Electrochim Acta 210:122–129

    Article  Google Scholar 

  146. Zeng Q, Bai J, Li J et al (2018) Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatment. Appl Energy 220:127–137

    Article  Google Scholar 

  147. Khan ME, Khan MM, Min BK, Cho MH (2018) Microbial fuel cell assisted band gap narrowed TiO2 for visible light induced photocatalytic activities and power generation. Sci Rep 8

  148. Wang H, Qian F, Wang G et al (2013) Self-biased solar-microbial device for sustainable hydrogen generation. ACS Nano 7:8728–8735

    Article  Google Scholar 

  149. Li M, He X, Zeng Y et al (2015) Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chem Sci 6:6799–6805

    Article  Google Scholar 

  150. Logan BE, Call D, Cheng S et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  Google Scholar 

  151. Chorbadzhiyska E, Apostolova D, Bardarov I et al (2020) Hybrid MFC-MEC systems: principles and applications. Bulg Chem Commun. https://doi.org/10.34049/bcc.52.A.178

  152. Jung RK, Cheng S, Oh SE, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  Google Scholar 

  153. Wang A, Sun D, Cao G et al (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143

    Article  Google Scholar 

  154. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104:18871–18873

    Article  Google Scholar 

  155. Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ Sci Technol 41:4053–4058

    Article  Google Scholar 

  156. Ren Z, Ward TE, Logan BE, Regan JM (2007) Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J Appl Microbiol 103:2258–2266

    Article  Google Scholar 

  157. Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sust Energ Rev 31:158–173

    Article  Google Scholar 

  158. Sun M, Sheng GP, Zhang L et al (2008) An MEC-MFC-coupled system for biohydrogen production from acetate. Environ Sci Technol 42:8095–8100

    Article  Google Scholar 

  159. Rago L, Monpart N, Cortés P et al (2016) Performance of microbial electrolysis cells with bioanodes grown at different external resistances. Water Sci Technol 73:1129–1135

    Article  Google Scholar 

  160. Huang L, Yao B, Wu D, Quan X (2014) Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell - microbial electrolysis cell systems. J Power Sources 259:54–64

    Article  Google Scholar 

  161. Li Y, Wu Y, Liu B et al (2015) Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system. Bioresour Technol 192:238–246

    Article  Google Scholar 

  162. Li Z, Wang Q, Liu D et al (2013) Ionic liquid-mediated electrochemical CO2 reduction in a microbial electrolysis cell. Electrochem Commun 35:91

    Article  Google Scholar 

  163. Liu H, Leng F, Guan Y et al (2017) Simultaneous pollutant removal and electricity generation in a combined ABR-MFC-MEC system treating fecal wastewater. Water Air Soil Pollut 228:179

  164. Zhao H, Zhang Y, Zhao B et al (2012) Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode. Environ Sci Technol 46:5198–5204

    Article  Google Scholar 

  165. Wang X, Tian Y, Liu H et al (2019) Optimizing the performance of organics and nutrient removal in constructed wetland–microbial fuel cell systems. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.11.005

  166. Cusick RD, Logan BE (2012) Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol 107:110–115

    Article  Google Scholar 

  167. Gude VG (2016) Wastewater treatment in microbial fuel cells - an overview. J Clean Prod 122:287–307

    Article  Google Scholar 

  168. Elabed A, El Abed S, Ibnsouda S, Erable B (2019) Sustainable approach for tannery wastewater treatment: bioelectricity generation in bioelectrochemical systems. Arab J Sci Eng 44:10057–10066

    Article  Google Scholar 

  169. Sevda S, Yuan H, He Z, Abu-Reesh IM (2015) Microbial desalination cells as a versatile technology: functions, optimization and prospective. Desalination 371:9–17

    Article  Google Scholar 

  170. Yuan L, Yang X, Liang P et al (2012) Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresour Technol 110:735–738

    Article  Google Scholar 

  171. Chen X, Xia X, Liang P et al (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45:2465–2470

    Article  Google Scholar 

  172. Watson VJ, Logan BE (2011) Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochem Commun 13:54–56

    Article  Google Scholar 

  173. Pandit S, Sarode S, Das D (2017) Fundamentals of microbial desalination cell. In: Microbial fuel cell: a bioelectrochemical system that converts waste to watts. 18:353–371

  174. Luo H, Xu P, Jenkins PE, Ren Z (2012) Ionic composition and transport mechanisms in microbial desalination cells. J Membr Sci 409–410:16–23

    Article  Google Scholar 

  175. Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448

    Article  Google Scholar 

  176. Borjas Z, Esteve-Núñez A, Ortiz JM (2017) Strategies for merging microbial fuel cell technologies in water desalination processes: start-up protocol and desalination efficiency assessment. J Power Sources. https://doi.org/10.1016/j.jpowsour.2017.02.052

  177. Luo H, Jenkins PE, Ren Z (2011) Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol 45:340–344

    Article  Google Scholar 

  178. Zhang L, Zhu X, Kashima H et al (2015) Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells. Bioresour Technol 179:26–34

    Article  Google Scholar 

  179. Kim Y, Logan BE (2013) Microbial desalination cells for energy production and desalination. Desalination 308:122–130

    Article  Google Scholar 

  180. Oguz Koroglu E, Civelek Yoruklu H, Demir A, Ozkaya B (2019) Scale-up and commercialization issues of the MFCs. In: Microbial electrochemical technology

  181. Prestigiacomo C, Fernandez-Marchante CM, Fernández-Morales FJ et al (2016) New prototypes for the isolation of the anodic chambers in microbial fuel cells. Fuel 181:704–710

    Article  Google Scholar 

  182. Kuntke P, Sleutels THJA, Saakes M, Buisman CJN (2014) Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell. Int J Hydrog Energy 39:4771–4778

    Article  Google Scholar 

  183. Papillon J, Ondel O, Maire É (2021) Scale up of single-chamber microbial fuel cells with stainless steel 3D anode: Effect of electrode surface areas and electrode spacing. Bioresour Technol Reports 13:100632

  184. Pasternak G, Greenman J, Ieropoulos I (2017) Self-powered, autonomous biological oxygen demand biosensor for online water quality monitoring. Sensors Actuators B Chem 244:815–822

    Article  Google Scholar 

  185. Koroglu EO, Yoruklu HC, Demir A, Ozkaya B (2018) Scale-up and commercialization issues of the MFCs: challenges and implications. In: Biomass, biofuels, biochemicals: microbial electrochemical technology: sustainable platform for fuels, chemicals and remediation. Elsevier, 565–583

  186. Kim B, Chang IS, Dinsdale RM, Guwy AJ (2021) Accurate measurement of internal resistance in microbial fuel cells by improved scanning electrochemical impedance spectroscopy. Electrochim Acta 366:137388

  187. Ghasemi B, Yaghmaei S, Ghaderi S et al (2020) Effects of chemical, electrochemical, and electrospun deposition of polyaniline coatings on surface of anode electrodes for evaluation of MFCs’ performance. J Environ Chem Eng 8:104039

  188. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344

    Article  Google Scholar 

  189. Nwaokocha CN, Giwa SO, Layeni AT et al (2020) Microbial fuel cell: bio-energy production from Nigerian corn starch wastewater using iron electrodes. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.09.345

  190. Peera SG, Maiyalagan T, Liu C et al (2020) A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.07.252

  191. Stoll ZA, Ma Z, Trivedi CB et al (2016) Sacrificing power for more cost-effective treatment: a techno-economic approach for engineering microbial fuel cells. Chemosphere 161:10–18

    Article  Google Scholar 

  192. Serra PMD, ES A (2021) Sourcing power with microbial fuel cells: a timeline. J Power Sources 482:228921

  193. Yaqoob AA, Ibrahim MNM, Rodríguez-Couto S (2020) Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): an overview. Biochem Eng J 164:107779

  194. Babauta JT, Kerber M, Hsu L et al (2018) Scaling up benthic microbial fuel cells using flyback converters. J Power Sources 395:98–105

    Article  Google Scholar 

  195. López-Hincapié JD, Picos-Benítez AR, Cercado B et al (2020) Improving the configuration and architecture of a small-scale air-cathode single chamber microbial fuel cell (MFC) for biosensing organic matter in wastewater samples. J Water Process Eng 38:101671

  196. Neethu B, Ghangrekar MM (2017) Electricity generation through a photo sediment microbial fuel cell using algae at the cathode. Water Sci Technol 76:3269–3277

    Article  Google Scholar 

  197. Narayanasamy S, Jayaprakash J (2018) Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation. Chem Eng J 343:258–269

    Article  Google Scholar 

  198. Nguyen DT, Taguchi K (2019) Enhancing the performance of E. coli-powered MFCs by using porous 3D anodes based on coconut activated carbon. Biochem Eng J 151:107357

  199. Tajdid Khajeh R, Aber S, Zarei M (2020) Comparison of NiCo2O4, CoNiAl-LDH, and CoNiAl-LDH@NiCo2O4 performances as ORR catalysts in MFC cathode. Renew Energy 154:1263–1271

    Article  Google Scholar 

  200. Theodosiou P, Greenman J, Ieropoulos I (2019) Towards monolithically printed Mfcs: development of a 3d-printable membrane electrode assembly (mea). Int J Hydrog Energy 44:4450–4462

    Article  Google Scholar 

  201. He W, Wei J, Huang T, Zhang E (2020) Enhanced electricity production in single-chamber MFCs with air cathodes decorated by Fe–N–C catalysts derived from 5H-dibenz [b,f] azepine-5-carboxamide (Carbamazepine). Int J Hydrog Energy 45:17525–17532

    Article  Google Scholar 

  202. Juang DF, Lee CH, Hsueh SC (2012) Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Bioresour Technol 123:23–29

    Article  Google Scholar 

  203. Bakonyi P, Koók L, Rózsenberszki T et al (2020) Development and application of supported ionic liquid membranes in microbial fuel cell technology: a concise overview. Membranes (Basel) 10:10011016

  204. Khalili HB, Mohebbi-Kalhori D, Afarani MS (2017) Microbial fuel cell (MFC) using commercially available unglazed ceramic wares: low-cost ceramic separators suitable for scale-up. Int J Hydrog Energy 42:8233–8241

    Article  Google Scholar 

  205. Das I, Das S, Dixit R, Ghangrekar MM (2020) Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell. Ionics (Kiel). https://doi.org/10.1007/s11581-020-03472-1

  206. You J, Fan H, Winfield J, Ieropoulo IA (2020) Complete microbial fuel cell fabrication using additive layer manufacturing. Molecules. https://doi.org/10.3390/molecules25133051

  207. Nagar H, Aniya V (2020) Microporous material induced composite membrane with reduced oxygen leakage for MFC application. J Environ Chem Eng 8:104117

  208. Koroglu EO, Yoruklu HC, Demir A, Ozkaya B (2018) Scale-up and commercialization issues of the MFCs: challenges and implications. In: Biomass, biofuels, biochemicals: microbial electrochemical technology: sustainable platform for fuels, chemicals and remediation. Elsevier, 565–583

  209. Taşkan E, Bulak S, Taşkan B et al (2019) Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry 128:118–125

  210. Ardakani MN, Badalians Gholikandi G (2020) Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery - a state-of-the-art review. Biomass Bioenergy 141

  211. Li C, Song Y, Wang X, Zhang Q (2020) Synthesis, characterization and application of S-TiO2/PVDF-g-PSSA composite membrane for improved performance in MFCs. Fuel 264:116847

  212. Yang W, Li J, Fu Q et al (2021) Minimizing mass transfer losses in microbial fuel cells: theories, progresses and prospectives. Renew Sustain Energy Rev 136:110460

  213. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN (2019) Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation. Environ Sci Pollut Res 26:21201–21215

    Article  Google Scholar 

  214. Fischer F, Sugnaux M, Savy C, Hugenin G (2018) Microbial fuel cell stack power to lithium battery stack: pilot concept for scale up. Appl Energy 230:1633–1644

    Article  Google Scholar 

  215. Tremouli A, Greenman J, Ieropoulos I (2018) Investigation of ceramic MFC stacks for urine energy extraction. Bioelectrochemistry 123:19–25

    Article  Google Scholar 

  216. Huang S, Zhang J, Pi J et al (2021) Long-term electricity generation and denitrification performance of MFCs with different exchange membranes and electrode materials. Bioelectrochemistry 140:107748

  217. Chakraborty I, Sathe SM, Dubey BK, Ghangrekar MM (2020) Waste-derived biochar: applications and future perspective in microbial fuel cells. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123587

  218. He L, Du P, Chen Y et al (2017) Advances in microbial fuel cells for wastewater treatment. Renew Sust Energ Rev 71:388–403

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this article would like to express their gratitude to the Association of Chemical Engineers, BITS Pilani, Hyderabad Campus, for facilitating and giving them the opportunity to conduct the studies and research involved in the making of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sreedhar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, S., Bhatnagar, P., Dhingra, S. et al. Wastewater treatment and energy production by microbial fuel cells. Biomass Conv. Bioref. 13, 3569–3592 (2023). https://doi.org/10.1007/s13399-021-01411-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01411-2

Keywords

Navigation