Skip to main content

Advertisement

Log in

Single-route synthesis of binary metal oxide loaded coconut shell and watermelon rind biochar: Characterizations and cyclic voltammetry analysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Generally, the type of biomass precursors is one of the key factors affecting the properties of synthesized biochar. This novel study therefore examined the single-route preparation of coconut shell and watermelon rind biochar with the combination of two types of binary metal oxide, iron nickel oxide (Fe2NiO4), and cobalt iron oxide (CoFe2O4) by employing a novel vacuum condition in an electric muffle furnace. The samples were characterized by several methods such as Fourier transform infrared (FTIR), field emission scanning electron microscope (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) Surface Area. The optimum pyrolysis temperature for producing a high surface area of 322.142 m2/g and 441.021 m2/g for coconut shell biochar and watermelon rind biochar, respectively, was recorded at 600 °C. FTIR analysis revealed lesser adsorption bands found in FTIR spectrum of the samples with higher pyrolysis temperature (500–700 °C). In addition, FESEM results also revealed the surface changes of the samples with the impregnation of CoFe2O44 and Fe2NiO4. Furthermore, the value added application of biochar in electrochemical energy storage has been explored in the present work. In typical three-electrode configuration, WR-BMO 600 exhibits about 152.09 Fg−1 with energy density about 19.01 Wh kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agudosi ES, Abdullah EC, Numan A, Mubarak NM, Aid SR, Benages-Vilau R, Gómez-Romero P, Khalid M, Omar N (2020) Fabrication of 3D binder-free graphene NiO electrode for highly stable supercapattery. Sci Rep 10(1):11214

    Article  Google Scholar 

  2. Dong J, Li S, Ding Y (2020) Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors. J Alloys Compd 845:155701

    Article  Google Scholar 

  3. Xie K, Zhang M, Yang Y, Zhao L, Qi W (2018) Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites. Nanoscale Res Lett 13(1):163

    Article  Google Scholar 

  4. Kalyani P, Anitha A (2013) Biomass carbon and its prospects in electrochemical energy systems. Int J Hydrog Energy 38(10):4034–4045

    Article  Google Scholar 

  5. Wang J-R, Wan F, Lü Q-F, Chen F, Lin Q (2018) Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: Effect of pyrolysis temperature and high electrochemical performance. J Mater Sci Technol 34(10):1959–1968

    Article  Google Scholar 

  6. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43(9):1812–1836

    Article  Google Scholar 

  7. Smider B, Singh B (2014) Agronomic performance of a high ash biochar in two contrasting soils. Agric Ecosyst Environ 191:99–107

    Article  Google Scholar 

  8. Ruthiraan M, Abdullah EC, Mubarak NM, Noraini MN (2017) A promising route of magnetic based materials for removal of cadmium and methylene blue from waste water. J Environ Chem Eng 5(2):1447–1455

    Article  Google Scholar 

  9. Noraini MN, Abdullah EC, Othman R, Mubarak NM (2016) Single-route synthesis of magnetic biochar from sugarcane bagasse by microwave-assisted pyrolysis. Mater Lett 184:315–319

    Article  Google Scholar 

  10. Magnacca G, Guerretta F, Vizintin A, Benzi P, Valsania MC, Nisticò R (2018) Preparation, characterization and environmental/electrochemical energy storage testing of low-cost biochar from natural chitin obtained via pyrolysis at mild conditions. Appl Surf Sci 427:883–893

    Article  Google Scholar 

  11. Parsimehr H, Ehsani A (2020) Algae-based electrochemical energy storage devices. Green Chem 22(23):8062–8096

    Article  Google Scholar 

  12. Thines KR, Abdullah EC, Mubarak NM, Ruthiraan M (2017) In-situ polymerization of magnetic biochar – polypyrrole composite: a novel application in supercapacitor. Biomass Bioenergy 98:95–111

    Article  Google Scholar 

  13. Rout T, Pradhan D, Singh RK, Kumari N (2016) Exhaustive study of products obtained from coconut shell pyrolysis. J Environ Chem Eng 4(3):3696–3705

    Article  Google Scholar 

  14. Zhu L, Lei H, Wang L, Yadavalli G, Zhang X, Wei Y, Liu Y, Yan D, Chen S, Ahring B (2015) Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. J Anal Appl Pyrolysis 115:149–156

    Article  Google Scholar 

  15. Kizito S, Wu S, Kipkemoi Kirui W, Lei M, Lu Q, Bah H, Dong R (2015) Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci Total Environ 505:102–112

    Article  Google Scholar 

  16. Agrafioti E, Kalderis D, Diamadopoulos E (2014) Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manag 133:309–314

    Article  Google Scholar 

  17. Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248

    Article  Google Scholar 

  18. Shabangu S, Woolf D, Fisher EM, Angenent LT, Lehmann J (2014) Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel 117:742–748

    Article  Google Scholar 

  19. Budai A, Wang L, Gronli M, Strand LT, Antal MJ, Abiven S, Dieguez-Alonso A, Anca-Couce A, Rasse DP (2014) Surface properties and chemical composition of corncob and Miscanthus biochars: effects of production temperature and method. J Agric Food Chem 62(17):3791–3799

    Article  Google Scholar 

  20. Sánchez ME, Menéndez JA, Domínguez A, Pis JJ, Martínez O, Calvo LF, Bernad PL (2009) Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenergy 33(6):933–940

    Article  Google Scholar 

  21. Salema AA, Afzal MT, Bennamoun L (2017) Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresour Technol 233:353–362

    Article  Google Scholar 

  22. Cazetta AL, Pezoti O, Bedin KC, Silva TL, Paesano Junior A, Asefa T, Almeida VC (2016) Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustain Chem Eng 4(3):1058–1068

    Article  Google Scholar 

  23. Zhou N, Chen H, Xi J, Yao D, Zhou Z, Tian Y, Lu X (2017) Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresour Technol 232:204–210

    Article  Google Scholar 

  24. Lam SS, Chase HA (2012) A review on waste to energy processes using microwave pyrolysis. Energies 5(10):4209–4232

    Article  Google Scholar 

  25. Cao X, Sun S, Sun R (2017) Application of biochar-based catalysts in biomass upgrading: a review. RSC Adv 7(77):48793–48805

    Article  Google Scholar 

  26. Cheng B-H, Zeng RJ, Jiang H (2017) Recent developments of post-modification of biochar for electrochemical energy storage. Bioresour Technol 246:224–233

    Article  Google Scholar 

  27. Xiu S, Shahbazi A, Li R (2017) Characterization, Modification and application of biochar for energy storage and catalysis: a review. Trends in Renewable Energy 3(1):86–101

    Article  Google Scholar 

  28. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378

    Article  Google Scholar 

  29. Angın D, Altintig E, Köse TE (2013) Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 148:542–549

    Article  Google Scholar 

  30. Thomas D, Fernandez NB, Mullassery MD, Surya R (2020) Iron oxide loaded biochar/polyaniline nanocomposite: synthesis, characterization and electrochemical analysis. Inorg Chem Commun 119:108097

    Article  Google Scholar 

  31. Wang P, Zhang G, Li M-Y, Yin Y-X, Li J-Y, Li G, Wang W-P, Peng W, Cao F-F, Guo Y-G (2019) Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem Eng J 375:122020

    Article  Google Scholar 

  32. Thines KR, Abdullah EC, Mubarak NM (2017) Effect of process parameters for production of microporous magnetic biochar derived from agriculture waste biomass. Microporous Mesoporous Mater 253:29–39

    Article  Google Scholar 

  33. Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578

    Article  Google Scholar 

  34. Park JH, Ok YS, Kim SH, Cho JS, Heo JS, Delaune RD, Seo DC (2015) Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures. Environ Geochem Health 37(6):969–983

    Article  Google Scholar 

  35. Sarswat A, Mohan D (2016) Sustainable development of coconut shell activated carbon (CSAC) and a magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal. RSC Adv 6(88):85390–85410

    Article  Google Scholar 

  36. M. Azmier, N. Ahmad, O. Bello, Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions, Applied Water Science 5 (2014).

    Google Scholar 

  37. Enaime G, Baçaoui A, Yaacoubi A, Lübken M (2020) Biochar for wastewater treatment—conversion technologies and applications. Appl Sci 10(10):3492

    Article  Google Scholar 

  38. Wang H, Gao B, Wang S, Fang J, Xue Y, Yang K (2015) Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour Technol 197:356–362

    Article  Google Scholar 

  39. Sarkar JK, Wang Q (2020) Different pyrolysis process conditions of South Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies 13(8):1970

    Article  Google Scholar 

  40. Liu H, Xu F, Xie Y, Wang C, Zhang A, Li L, Xu H (2018) Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Sci Total Environ 645:702–709

    Article  Google Scholar 

  41. Yan Z, Song N, Cai H, Tay J-H, Jiang H (2012) Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J Hazard Mater 199-200:217–225

    Article  Google Scholar 

  42. Zhang L, Tu L-y, Liang Y, Chen Q, Li Z-s, Li C-h, Wang Z-h, Li W (2018) Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv 8(74):42280–42291

    Article  Google Scholar 

  43. Hao Z, Wang C, Yan Z, Jiang H, Xu H (2018) Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere 211:962–969

    Article  Google Scholar 

  44. Üner O, Geçgel Ü, Bayrak Y (2015) Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride. Arab J Chem

  45. Thines KR, Abdullah EC, Ruthiraan M, Mubarak NM, Tripathi M (2016) A new route of magnetic biochar based polyaniline composites for supercapacitor electrode materials. J Anal Appl Pyrolysis 121:240–257

    Article  Google Scholar 

  46. Zhao Y, Zhang R, Liu H, Li M, Chen T, Chen D, Zou X, Frost RL (2019) Green preparation of magnetic biochar for the effective accumulation of Pb(II): performance and mechanism. Chem Eng J 375:122011

    Article  Google Scholar 

  47. Mo R-J, Zhao Y, Wu M, Xiao H-M, Kuga S, Huang Y, Li J-P, Fu S-Y (2016) Activated carbon from nitrogen rich watermelon rind for high-performance supercapacitors. RSC Adv 6(64):59333–59342

    Article  Google Scholar 

  48. Saleh S, Kamarudin KB, Ghani WAWAK, Kheang LS (2016) Removal of organic contaminant from aqueous solution using magnetic biochar. Procedia Eng 148:228–235

    Article  Google Scholar 

  49. Oh W-D, Lua S-K, Dong Z, Lim T-T (2015) Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes. J Hazard Mater 284:1–9

    Article  Google Scholar 

  50. D. Das, D. Samal, M. Bc, Preparation of activated carbon from green coconut shell and its characterization, Journal of Chemical Engineering & Process Technology 06 (2015).

    Google Scholar 

  51. Sharma RK, Chan WG, Hajaligol MR (2009) Effect of reaction conditions on product distribution from the co-pyrolysis of α-amino acids with glucose. J Anal Appl Pyrolysis 86(1):122–134

    Article  Google Scholar 

  52. Lee XJ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Ng HK (2017) Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresour Technol 236:155–163

    Article  Google Scholar 

  53. N. Lan Huong, T. Nguyen, H.T. Van, V. Xuan Hoa, T. Ha, T. Nguyen, X. Nguyen, N. Ca, Treatment of hexavalent chromium contaminated wastewater using activated carbon derived from coconut shell loaded by silver nanoparticles: batch experiment, Water, Air, & Soil Pollution 230 (2019).

    Google Scholar 

  54. Li H, Xiong J, Xiao T, Long J, Wang Q, Li K, Liu X, Zhang G, Zhang H (2019) Biochar derived from watermelon rinds as regenerable adsorbent for efficient removal of thallium(I) from wastewater. Process Saf Environ Prot 127:257–266

    Article  Google Scholar 

  55. Fu P, Yi W, Bai X, Li Z, Hu S, Xiang J (2011) Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues. Bioresour Technol 102(17):8211–8219

    Article  Google Scholar 

  56. Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462

    Article  Google Scholar 

  57. Kante K, Deliyanni E, Bandosz TJ (2009) Interactions of NO2 with activated carbons modified with cerium, lanthanum and sodium chlorides. J Hazard Mater 165(1):704–713

    Article  Google Scholar 

  58. Machala L, Tuček J, Zbořil R (2011) Polymorphous transformations of nanometric iron(III) oxide: a review. Chem Mater 23(14):3255–3272

    Article  Google Scholar 

  59. E. Taer, A. Agustino, R. Farma, R. Taslim, Awitdrus, M. Paiszal, A. Ira, S.D. Yardi, Y.P. Sari, H. Yusra, S. Nurjanah, S.D. Hartati, Z. Aini, R.N. Setiadi, The relationship of surface area to cell capacitance for monolith carbon electrode from biomass materials for supercapacitor aplication, Journal of Physics: Conference Series 1116 (2018) 032040.

  60. Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sust Energ Rev 101:123–145

    Article  Google Scholar 

  61. T. Abbas, N. Akter, M.S. Alam, D.S. Alessi, A. Ali, S. Ali, M.S. Azam, A. Bashir, L. Beesley, N. Bolan, Z. Cai, L. Cui, C.E. Egene, A. El-Naggar, S.Y. Gladys Choo, S.R. Gunatilake, K. Hall, N.E.E. Hassan, B. Hudcová, J.A. Ippolito, S.-H. Jien, M.G. Johnson, M. Komárek, H.W. Kua, E.E. Kwon, J. Lee, Q. Li, X. Li, B. Liu, G. Liu, S.-H. Liu, J. Luo, A. Maqbool, E. Moore, N.K. Niazi, J.M. Novak, N.L. Obadamudalige, Y.S. Ok, C. Peiris, M.Z.u. Rehman, J. Rinklebe, M. Rizwan, A.K. Sarmah, S.M. Shaheen, H. Shang, K.A. Spokas, F.M.G. Tack, R. Tareq, L. Trakal, D.C.W. Tsang, M. Vithanage, M. Vítková, H. Wang, J. Wang, X. Wang, J.J. Wewalwela, A. Williams, X. Xiong, Y. Xu, Y. Yan, X. Yang, S. You, I.K.M. Yu, C. Zhang, M. Zhang, S. Zhang, W. Zhang, C. Zhao, H. Zheng, S. Zhou, X. Zhu, List of Contributors, in: Y.S. Ok, D.C.W. Tsang, N. Bolan, J.M. Novak (Eds.), Biochar from Biomass and Waste, Elsevier2019, pp. xi-xv.

Download references

Acknowledgements

The authors wish to acknowledge MJIIT JICA Fund (UTM-Vot:4B593) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ezzat Chan Abdullah, Nabisab Mujawar Mubarak or Mohammad Khalid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, N., Abdullah, E.C., Petrus, A.A. et al. Single-route synthesis of binary metal oxide loaded coconut shell and watermelon rind biochar: Characterizations and cyclic voltammetry analysis. Biomass Conv. Bioref. 13, 2279–2291 (2023). https://doi.org/10.1007/s13399-021-01367-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01367-3

Keywords

Navigation