Skip to main content

A review on potential of biohydrogen generation through waste decomposition technologies

Abstract

This article reviews various waste decomposition technologies composed of thermochemical and biochemical conversion routes for the generation of biohydrogen from biomass wastes. Due to the escalation of global energy consumptions, concerns on the energy security fuelled increasing generation of energy processes to meet such demands. The development of hydrogen has always sustained interest due to its immense prospects as a clean energy source. Instead, the current hydrogen production process termed as grey hydrogen posed the main contributing factor for carbon-related emissions. Therefore, technological prospects for green hydrogen (biohydrogen) production in the transition towards a decarbonised energy sector are desirable and advantageous. Furthermore, current constraints associated to the production of biohydrogen, ranging from safety to transportation aspects, are also discussed to provide informative insights to researchers and decision makers for a better understanding of biohydrogen economy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ediger VŞ, Akar S (2007) ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 35:1701–1708. https://doi.org/10.1016/j.enpol.2006.05.009

    Article  Google Scholar 

  2. 2.

    Ediger VŞ, Akar S, Uǧurlu B (2006) Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model. Energy Policy 34:3836–3846. https://doi.org/10.1016/j.enpol.2005.08.023

    Article  Google Scholar 

  3. 3.

    Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev 11:1388–1413. https://doi.org/10.1016/j.rser.2005.12.004

    Article  Google Scholar 

  4. 4.

    Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189. https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  5. 5.

    IEA (2020) Global CO2 emissions in 2019. Paris

  6. 6.

    IEA (2017) Global CO2 emissions by sector. Paris

  7. 7.

    Petinrin JO, Shaaban M (2015) Renewable energy for continuous energy sustainability in Malaysia. Renew Sustain Energy Rev 50:967–981. https://doi.org/10.1016/j.rser.2015.04.146

    Article  Google Scholar 

  8. 8.

    Mujiyanto S, Tiess G (2013) Secure energy supply in 2025: Indonesia’s need for an energy policy strategy. Energy Policy 61:31–41. https://doi.org/10.1016/j.enpol.2013.05.119

    Article  Google Scholar 

  9. 9.

    Wattana S (2014) Bioenergy development in Thailand: Challenges and strategies. Energy Procedia 52:506–515. https://doi.org/10.1016/j.egypro.2014.07.104

    Article  Google Scholar 

  10. 10.

    Fay M, Hallegatte S, Vogt-Schilb A, et al (2015) Decarbonizing development: three steps to a zero-carbon future

  11. 11.

    Ball M, Wietschel M (2009) The future of hydrogen - opportunities and challenges. Int J Hydrogen Energy 34:615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014

    Article  Google Scholar 

  12. 12.

    Zhang Z, Wang Y, Hu J, Wu Q, Zhang Q (2015) Influence of mixing method and hydraulic retention time on hydrogen production through photo-fermentation with mixed strains. Int J Hydrogen Energy 40:6521–6529. https://doi.org/10.1016/j.ijhydene.2015.03.118

    Article  Google Scholar 

  13. 13.

    Niaz S, Manzoor T, Pandith AH (2015) Hydrogen storage: Materials, methods and perspectives. Renew Sustain Energy Rev 50:457–469. https://doi.org/10.1016/j.rser.2015.05.011

    Article  Google Scholar 

  14. 14.

    Sgobbi A, Nijs W, De Miglio R et al (2016) How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. Int J Hydrogen Energy 41:19–35. https://doi.org/10.1016/j.ijhydene.2015.09.004

    Article  Google Scholar 

  15. 15.

    Pudukudy M, Yaakob Z, Mohammad M, Narayanan B, Sopian K (2014) Renewable hydrogen economy in Asia - Opportunities and challenges: An overview. Renew Sustain Energy Rev 30:743–757. https://doi.org/10.1016/j.rser.2013.11.015

    Article  Google Scholar 

  16. 16.

    Nicita A, Maggio G, Andaloro APF, Squadrito G (2020) Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. Int J Hydrogen Energy 45:11395–11408. https://doi.org/10.1016/j.ijhydene.2020.02.062

    Article  Google Scholar 

  17. 17.

    Franchi G, Capocelli M, De Falco M et al (2020) Hydrogen production via steam reforming: A critical analysis of MR and RMM technologies. Membranes (Basel) 10. https://doi.org/10.3390/membranes10010010

  18. 18.

    Bildirici ME, Özaksoy F (2013) The relationship between economic growth and biomass energy consumption in some European countries. J Renew Sustain Energy 5:1–10. https://doi.org/10.1063/1.4802944

    Article  Google Scholar 

  19. 19.

    Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0

    Article  Google Scholar 

  20. 20.

    Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015

    Article  Google Scholar 

  21. 21.

    Ren J, Toniolo S (2018) Life cycle sustainability decision-support framework for ranking of hydrogen production pathways under uncertainties: An interval multi-criteria decision making approach. J Clean Prod 175:222–236. https://doi.org/10.1016/j.jclepro.2017.12.070

    Article  Google Scholar 

  22. 22.

    Dou B, Zhang H, Song Y, Zhao L, Jiang B, He M, Ruan C, Chen H, Xu Y (2019) Hydrogen production from the thermochemical conversion of biomass: Issues and challenges. Sustain Energy Fuels 3:314–342. https://doi.org/10.1039/c8se00535d

    Article  Google Scholar 

  23. 23.

    James AMR, Yuan W, Boyette MD (2016) The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips. Energies 9:283. https://doi.org/10.3390/en9040283

    Article  Google Scholar 

  24. 24.

    Ritchie H Energy Production and Consumption. In: Our World Data. https://ourworldindata.org/energy-production-consumption. Accessed 30 Jan 2020

  25. 25.

    Sönnichse N (2020) Cost of coal and natural gas for electric generation in the United States from 1980 to 2019*. In: Statista. https://www.statista.com/statistics/189180/natural-gas-vis-a-vis-coal-prices/. Accessed 30 Dec 2020

  26. 26.

    Karkour S, Ichisugi Y, Abeynayaka A, Itsubo N (2020) External-cost estimation of electricity generation in G20 countries: Case study using a global life-cycle impact-assessment method. Sustain 12:. https://doi.org/10.3390/su12052002

  27. 27.

    International Renewable Energy Agency (IRENA) (2019) Renewable Power Generation Costs in 2019. https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019. Accessed 30 Dec 2020

  28. 28.

    Sönnichsen N (2020) Electricity production costs for nuclear power plants in the United States from 2002 to 2019. In: Statista. https://www.statista.com/statistics/184754/cost-of-nuclear-electricity-production-in-the-us-since-2000/. Accessed 30 Dec 2020

  29. 29.

    (IRENA) IREA (2020) Renewable capacity highlights

  30. 30.

    Hosseini SE, Wahid MA, Ganjehkaviri A (2015) An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia. Energy Convers Manag 94:415–429. https://doi.org/10.1016/j.enconman.2015.02.012

    Article  Google Scholar 

  31. 31.

    Meher Kotay S, Das D (2008) Biohydrogen as a renewable energy resource-Prospects and potentials. Int J Hydrogen Energy 33:258–263. https://doi.org/10.1016/j.ijhydene.2007.07.031

    Article  Google Scholar 

  32. 32.

    Demirbas A (2009) Global renewable energy projections. Energy Sources, Part B Econ Plan Policy 4:212–224. https://doi.org/10.1080/15567240701620499

    Article  Google Scholar 

  33. 33.

    ERIA (2019) The Potential and Costs of Hydrogen Supply. Demand Supply Potential Hydrog Energy East Asia, ERIA Res Proj Rep FY2018 140–183

  34. 34.

    Prabakar D, Manimudi VT, Suvetha KS et al (2018) Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects. Renew Sustain Energy Rev 96:306–324. https://doi.org/10.1016/j.rser.2018.08.006

    Article  Google Scholar 

  35. 35.

    Preethi, Usman TMM, Rajesh Banu J et al (2019) Biohydrogen production from industrial wastewater: An overview. Bioresour Technol Reports 7:100287. https://doi.org/10.1016/j.biteb.2019.100287

    Article  Google Scholar 

  36. 36.

    Jiménez-Llanos J, Ramírez-Carmona M, Rendón-Castrillón L, Ocampo-López C (2020) Sustainable biohydrogen production by Chlorella sp. microalgae: A review. Int J Hydrogen Energy 45:8310–8328. https://doi.org/10.1016/j.ijhydene.2020.01.059

    Article  Google Scholar 

  37. 37.

    Akhtar A, Krepl V, Ivanova T (2018) A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass. Energy and Fuels 32:7294–7318. https://doi.org/10.1021/acs.energyfuels.8b01678

    Article  Google Scholar 

  38. 38.

    Luo Z, Zhou J (2012) Thermal Conversion of Biomass. In: Chen W-Y, Seiner J, Suzuki T, Lackner M (eds) Handbook of Climate Change Mitigation and Adaptation, Second Edi. Springer, New York, pp 1002–1037

  39. 39.

    Patel M, Zhang X, Kumar A (2016) Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renew Sustain Energy Rev 53:1486–1499. https://doi.org/10.1016/j.rser.2015.09.070

    Article  Google Scholar 

  40. 40.

    Mohan D, Sarswat A, Sik Y, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresour Technol 160:191–202. https://doi.org/10.1016/j.biortech.2014.01.120

    Article  Google Scholar 

  41. 41.

    Jaffar MM, Nahil MA, Williams PT (2020) Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass. Fuel Process Technol 208:106515. https://doi.org/10.1016/j.fuproc.2020.106515

    Article  Google Scholar 

  42. 42.

    Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis- A technological review. Energies 5:4952–5001. https://doi.org/10.3390/en5124952

    Article  Google Scholar 

  43. 43.

    Bakhtyari A, Makarem MA, Rahimpour MR (2018) Hydrogen Production Through Pyrolysis. Encycl Sustain Sci Technol:1–28. https://doi.org/10.1007/978-1-4939-2493-6_956-1

  44. 44.

    Tursi A (2019) A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res J 6:962–979. https://doi.org/10.18331/BRJ2019.6.2.3

    Article  Google Scholar 

  45. 45.

    Arregi A, Lopez G, Amutio M, Barbarias I, Bilbao J, Olazar M (2016) Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming. RSC Adv 6:25975–25985. https://doi.org/10.1039/c6ra01657j

    Article  Google Scholar 

  46. 46.

    Parthasarathy P, Narayanan SK (2014) Effect of Hydrothermal Carbonization Reaction Parameters on. Environ Prog Sustain Energy 33:676–680. https://doi.org/10.1002/ep.11974

    Article  Google Scholar 

  47. 47.

    Wu C, Williams PT (2014) Hydrogen from waste plastics by way of pyrolysis-gasification. Proc Inst Civ Eng Waste Resour Manag 167:35–46. https://doi.org/10.1680/warm.13.00006

    Article  Google Scholar 

  48. 48.

    Duman G, Yanik J (2017) Two-step steam pyrolysis of biomass for hydrogen production. Int J Hydrogen Energy 42:17000–17008. https://doi.org/10.1016/j.ijhydene.2017.05.227

    Article  Google Scholar 

  49. 49.

    Prasertcharoensuk P, Bull SJ, Phan AN (2019) Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters. Renew Energy 143:112–120. https://doi.org/10.1016/j.renene.2019.05.009

    Article  Google Scholar 

  50. 50.

    Hossain A, Ganesan P, Jewaratnam J, Chinna K (2017) Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production. Energy Convers Manag 133:349–362. https://doi.org/10.1016/j.enconman.2016.10.046

    Article  Google Scholar 

  51. 51.

    Kaushika ND, Reddy KS, Kaushik K (2016) Sustainable energy and the environment: A clean technology approach

  52. 52.

    Ibrahim AA (2018) Hydrogen Production from Light Hydrocarbons. In: Intech Open. pp 39–62

  53. 53.

    El-Mashad HM, Zhang R (2019) Advances in Plant-Based Waste-to-Energy Conversion Technologies. Byprod from Agric Fish 369–402. https://doi.org/10.1002/9781119383956.ch16

  54. 54.

    Nussbaumer T (2003) Combustion and Co-combustion of Biomass: Fundamentals, Technologies and Primary Measures for Emission Reduction. Energy & Fuels 17:1510–1521. https://doi.org/10.1021/ef030031q

    Article  Google Scholar 

  55. 55.

    Adams P, Bridgwater T, Lea-Langton A, et al (2018) Biomass Conversion Technologies. Report to NNFCC. Elsevier Inc.

  56. 56.

    Henne RA, Brand MA, Schveitzer B, Schein VAS (2019) Thermal behavior of forest biomass wastes produced during combustion in a boiler system. Rev Arvore 43:1–9. https://doi.org/10.1590/1806-90882019000100008

    Article  Google Scholar 

  57. 57.

    Isaac K, Bada SO (2020) The co-combustion performance and reaction kinetics of refuse derived fuels with South African high ash coal. Heliyon 6:e03309. https://doi.org/10.1016/j.heliyon.2020.e03309

    Article  Google Scholar 

  58. 58.

    Bermudez JM, Fidalgo B (2016) Production of bio-syngas and bio-hydrogen via gasification

  59. 59.

    Kirkels AF, Verbong GPJ (2011) Biomass gasification: Still promising? A 30-year global overview. Renew Sustain Energy Rev 15:471–481. https://doi.org/10.1016/j.rser.2010.09.046

    Article  Google Scholar 

  60. 60.

    Anniwaer A, Yu T, Chaihad N, Situmorang YA, Wang C, Kasai Y, Abudula A, Guan G (2020) Steam gasification of marine biomass and its biochars for hydrogen-rich gas production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00868-x

  61. 61.

    Xiao Y, Xu S, Song Y, Shan Y, Wang C, Wang G (2017) Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system. Fuel Process Technol 165:54–61. https://doi.org/10.1016/j.fuproc.2017.05.013

    Article  Google Scholar 

  62. 62.

    Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2014) Integrated microwave drying, pyrolysis and gasification for valorisation of organic wastes to syngas. Fuel 132:20–26. https://doi.org/10.1016/j.fuel.2014.04.064

    Article  Google Scholar 

  63. 63.

    Mirmoshtaghi G (2016) Biomass gasification in fluidized bed gasifiers; Modeling and simulation. Malardalen University

  64. 64.

    Kirkels AF, Verbong GPJ (2011) Biomass gasification: Still promising? A 30-year global overview. Renew Sustain Energy Rev 15:471–481. https://doi.org/10.1016/j.rser.2010.09.046

    Article  Google Scholar 

  65. 65.

    Kumar M, Olajire Oyedun A, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev 81:1742–1770. https://doi.org/10.1016/j.rser.2017.05.270

    Article  Google Scholar 

  66. 66.

    Kipcak E, Akgun M (2015) Hydrogen Production by Supercritical Water Gasification of Biomass. In: Fang Z, Jr. RS, Qi X (eds) Production of Hydrogen from Renewable Resources, 1st ed. Springer Netherlands, Netherland, pp 179–220

  67. 67.

    Susanti RF, Kim J, Yoo K ung (2014) Supercritical Water Gasification for Hydrogen Production: Current Status and Prospective of High-Temperature Operation. Elsevier B.V.

  68. 68.

    Ministry of Agriculture, Forestry, and Fisheries J (2008) The Asian Biomass Handbook Support Project for Building Asian-Partnership for. Japan Inst Energy 338

  69. 69.

    Miyata Y, Sagata K, Yamazaki Y, Teramura H, Hirano Y, Ogino C, Kita Y (2018) Mechanism of the Fe-Assisted Hydrothermal Liquefaction of Lignocellulosic Biomass. Ind Eng Chem Res 57:14870–14877. https://doi.org/10.1021/acs.iecr.8b03725

    Article  Google Scholar 

  70. 70.

    Kumar M, Oyedun AO, Kumar A (2019) Biohydrogen production from bio-oil via hydrothermal liquefaction, 2nd ed. Elsevier Inc.

  71. 71.

    Okolie JA, Rana R, Nanda S, Dalai AK, Kozinski JA (2019) Supercritical water gasification of biomass: A state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain Energy Fuels 3:578–598. https://doi.org/10.1039/c8se00565f

    Article  Google Scholar 

  72. 72.

    Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 81:1378–1392. https://doi.org/10.1016/j.rser.2017.05.178

    Article  Google Scholar 

  73. 73.

    Ahmad SFK, Md Ali UF, Isa KM (2019) Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: A review. Environ Eng Res 25:18–28. https://doi.org/10.4491/eer.2018.419

    Article  Google Scholar 

  74. 74.

    Cheng YW, Chong CC, Lee SP, Lim JW, Wu TY, Cheng CK (2020) Syngas from palm oil mill effluent (POME) steam reforming over lanthanum cobaltite: Effects of net-basicity. Renew Energy 148:349–362. https://doi.org/10.1016/j.renene.2019.10.040

    Article  Google Scholar 

  75. 75.

    Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Wan Mahari WA, Lee XY, Han CS, Vo DVN, van le Q, Aghbashlo M, Tabatabaei M, Sonne C, Peng W, Lam SS (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem Eng J 389:124401. https://doi.org/10.1016/j.cej.2020.124401

    Article  Google Scholar 

  76. 76.

    Kossalbayev BD, Tomo T, Zayadan BK, Sadvakasova AK, Bolatkhan K, Alwasel S, Allakhverdiev SI (2020) Determination of the potential of cyanobacterial strains for hydrogen production. Int J Hydrogen Energy 45:2627–2639. https://doi.org/10.1016/j.ijhydene.2019.11.164

    Article  Google Scholar 

  77. 77.

    Dudek M, Dębowski M, Zieliński M, Nowicka A, Rusanowska P (2018) Water from the Vistula Lagoon as a medium in mixotrophic growth and hydrogen production by Platymonas subcordiformis. Int J Hydrogen Energy 43:9529–9534. https://doi.org/10.1016/j.ijhydene.2018.04.039

    Article  Google Scholar 

  78. 78.

    Policastro G, Luongo V, Fabbricino M (2020) Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source. J Environ Manage 271:111006. https://doi.org/10.1016/j.jenvman.2020.111006

    Article  Google Scholar 

  79. 79.

    Cieciura-Włoch W, Borowski S, Domański J (2020) Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. Bioresour Technol 314:123713. https://doi.org/10.1016/j.biortech.2020.123713

    Article  Google Scholar 

  80. 80.

    Prajapati KB, Singh R (2020) Bio-electrochemically hydrogen and methane production from co-digestion of wastes. Energy 198:117259. https://doi.org/10.1016/j.energy.2020.117259

    Article  Google Scholar 

  81. 81.

    Jayabalan T, Manickam M, Naina Mohamed S (2020) NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production. Renew Energy 154:1144–1152. https://doi.org/10.1016/j.renene.2020.03.071

    Article  Google Scholar 

  82. 82.

    Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; Fundamentals and limiting processes. Int J Hydrogen Energy 27:1185–1193. https://doi.org/10.1016/S0360-3199(02)00131-3

    Article  Google Scholar 

  83. 83.

    Rossi F, Filipponi M (2011) Hydrogen production from biological systems under different illumination conditions. Int J Hydrogen Energy 36:7479–7486. https://doi.org/10.1016/j.ijhydene.2011.03.124

    Article  Google Scholar 

  84. 84.

    Vargas SR, dos Santos PV, Giraldi LA, et al (2018) Anaerobic phototrophic processes of hydrogen production by different strains of microalgae Chlamydomonas sp. FEMS Microbiol Lett 365:. https://doi.org/10.1093/femsle/fny073

  85. 85.

    Hoshino T, Johnson DJ, Scholz M, Cuello JL (2013) Effects of implementing PSI-light on hydrogen production via biophotolysis in Chlamydomonas reinhardtii mutant strains. Biomass and Bioenergy 59:243–252. https://doi.org/10.1016/j.biombioe.2013.09.004

    Article  Google Scholar 

  86. 86.

    Scoma A, Durante L, Bertin L, Fava F (2014) Acclimation to hypoxia in Chlamydomonas reinhardtii: Can biophotolysis be the major trigger for long-term H2 production? New Phytol 204:890–900. https://doi.org/10.1111/nph.12964

    Article  Google Scholar 

  87. 87.

    Melnicki MR, Pinchuk GE, Hill EA, et al (2012) Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium. MBio 3:. https://doi.org/10.1128/mBio.00197-12.Editor

  88. 88.

    Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H 2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157:613–619. https://doi.org/10.1016/j.jbiotec.2011.06.019

    Article  Google Scholar 

  89. 89.

    Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR (2010) Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium plectonema boryanum. Appl Biochem Biotechnol 162:208–220. https://doi.org/10.1007/s12010-009-8741-6

    Article  Google Scholar 

  90. 90.

    Dickson DJ, Page CJ, Ely RL (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol-gel. Int J Hydrogen Energy 34:204–215. https://doi.org/10.1016/j.ijhydene.2008.10.021

    Article  Google Scholar 

  91. 91.

    Batyrova K, Hallenbeck PC (2017) Hydrogen production by a Chlamydomonas reinhardtii strain with inducible expression of photosystem II. Int J Mol Sci 18. https://doi.org/10.3390/ijms18030647

  92. 92.

    Tamburic B, Zemichael FW, Maitland GC, Hellgardt K (2012) A novel nutrient control method to deprive green algae of sulphur and initiate spontaneous hydrogen production. Int J Hydrogen Energy 37:8988–9001. https://doi.org/10.1016/j.ijhydene.2012.02.043

    Article  Google Scholar 

  93. 93.

    Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300. https://doi.org/10.1023/a:1008175112704

    Article  Google Scholar 

  94. 94.

    Kossalbayev B, Tomo T, Zayadan B et al (2019) Determination of the potential of cyanobacterial strains for hydrogen production. Int J Hydrogen Energy 45:2627–2639. https://doi.org/10.1016/j.ijhydene.2019.11.164

    Article  Google Scholar 

  95. 95.

    Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A (2020) Green technology for sustainable biohydrogen production (waste to energy): A review. Sci Total Environ 728:138481. https://doi.org/10.1016/j.scitotenv.2020.138481

    Article  Google Scholar 

  96. 96.

    Abo-Hashesh M, Hallenbeck PC (2012) Microaerobic dark fermentative hydrogen production by the photosynthetic bacterium, Rhodobacter capsulatus JP91. Int J Low-Carbon Technol 7:97–103. https://doi.org/10.1093/ijlct/cts011

    Article  Google Scholar 

  97. 97.

    Madamwar D, Garg N, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767. https://doi.org/10.1023/A:1008919200103

    Article  Google Scholar 

  98. 98.

    Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production – A review. Bioresour Technol 243:1194–1206. https://doi.org/10.1016/j.biortech.2017.07.085

    Article  Google Scholar 

  99. 99.

    Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta - Bioenerg 1837:1178–1187. https://doi.org/10.1016/j.bbabio.2014.01.016

    Article  Google Scholar 

  100. 100.

    Tsygankov AA, Kosourov SN, Tolstygina IV et al (2006) Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrogen Energy 31:1574–1584. https://doi.org/10.1016/j.ijhydene.2006.06.024

    Article  Google Scholar 

  101. 101.

    Mohan SV, Mohanakrishna G, Srikanth S (2011) Biohydrogen production from industrial effluents, 1st ed. Elsevier Inc.

  102. 102.

    Sun Y, He J, Yang G, Sun G, Sage V (2019) A review of the enhancement of bio-hydrogen generation by chemicals addition. Catalysts 9. https://doi.org/10.3390/catal9040353

  103. 103.

    Cheng Y, Chong C, Lam M et al (2021) Identification of microbial inhibitions and mitigation strategies towards cleaner bioconversions of palm oil mill effluent (POME): A review. J Clean Prod 280:124346. https://doi.org/10.1016/j.jclepro.2020.124346

    Article  Google Scholar 

  104. 104.

    Fradinho JC, Oehmen A, Reis MAM (2014) Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): Substrate preferences and co-substrate uptake. J Biotechnol 185:19–27. https://doi.org/10.1016/j.jbiotec.2014.05.035

    Article  Google Scholar 

  105. 105.

    Adessi A, Philippis DR (2014) Photosynthesis and Hydrogen Production in Purple Non Sulfur Bacteria: Fundamental and Applied Aspects. In: Microbial BioEnergy: Hydrogen Production. Springer, Dordrecht

  106. 106.

    Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: A review. Int J Hydrogen Energy 39:3127–3141. https://doi.org/10.1016/j.ijhydene.2013.12.084

    Article  Google Scholar 

  107. 107.

    Madigan MM, Bender KS, Buckley D, et al (2014) Brock Biology of Microorganisms. Pearson

  108. 108.

    Wijffels RH, Barten H, Reith RH (2003) Bio-methane and bio-hydrogen : status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation - NOVEM, The Hague, The Netherlands

  109. 109.

    Dahiya S, Kumar AN, Shanthi Sravan J, et al (2018) Food waste biorefinery: Sustainable strategy for circular bioeconomy. Elsevier Ltd

  110. 110.

    Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win-win strategies toward better environmental protection. Biotechnol Adv 29:124–141. https://doi.org/10.1016/j.biotechadv.2010.10.001

    Article  Google Scholar 

  111. 111.

    Isikgor FH, Becer RC (2015) Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers. Polym Chem 6:4497–4559. https://doi.org/10.4324/9781315079097-35

    Article  Google Scholar 

  112. 112.

    Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4. https://doi.org/10.1186/s40643-017-0146-8

  113. 113.

    Sołowski G, Konkol I, Cenian A (2020) Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J Clean Prod 267:121721. https://doi.org/10.1016/j.jclepro.2020.121721

    Article  Google Scholar 

  114. 114.

    Ma J, Frear C, Wang Z-W, Yu L, Zhao Q, Li X, Chen S (2013) A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 134:391–395. https://doi.org/10.1016/j.biortech.2013.02.014

    Article  Google Scholar 

  115. 115.

    Minic Z, Thongbam PD (2011) The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes. Mar Drugs 9:719–738. https://doi.org/10.3390/md9050719

    Article  Google Scholar 

  116. 116.

    Liu S (2017) Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design. Elsevier

  117. 117.

    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry Fifth Edition: International Version. W.H. Freeman

  118. 118.

    Litwack G (2018) Metabolism of Amino Acids

  119. 119.

    Hipkiss AR, Cartwright SP, Bromley C, Gross SR, Bill RM (2013) Carnosine: Can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem Cent J 7:1–9. https://doi.org/10.1186/1752-153X-7-38

    Article  Google Scholar 

  120. 120.

    Den Besten G, Van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  Google Scholar 

  121. 121.

    Patakova P, Branska B, Sedlar K, Vasylkivska M, Jureckova K, Kolek J, Koscova P, Provaznik I (2019) Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci Rep 9:1–21. https://doi.org/10.1038/s41598-018-37679-0

    Article  Google Scholar 

  122. 122.

    Amador-Noguez D, Brasg IA, Feng XJ, Roquet N, Rabinowitz JD (2011) Metabolome remodeling during the acidogenic-solventogenic transition in clostridium acetobutylicum. Appl Environ Microbiol 77:7984–7997. https://doi.org/10.1128/AEM.05374-11

    Article  Google Scholar 

  123. 123.

    Ripoll V, Agabo-García C, Solera R, Perez M (2020) Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater. Environ Sci Water Res Technol 6:1880–1889. https://doi.org/10.1039/d0ew00275e

    Article  Google Scholar 

  124. 124.

    Liu D, Sun Y, Li Y, Lu Y (2017) Perturbation of formate pathway and NADH pathway acting on the biohydrogen production. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-10191-7

    Article  Google Scholar 

  125. 125.

    Fuller JR, Vitko NP, Perkowski EF, Scott E, Khatri D, Spontak JS, Thurlow LR, Richardson AR (2011) Identification of a lactate-quinone oxidoreductase in Staphylococcus aureus that is essential for virulence. Front Cell Infect Microbiol 1:19. https://doi.org/10.3389/fcimb.2011.00019

    Article  Google Scholar 

  126. 126.

    Schreiner ME, Eikmanns BJ (2005) Pyruvate:quinone oxidoreductase from Corynebacterium glutamicum: Purification and biochemical characterization. J Bacteriol 187:862–871. https://doi.org/10.1128/JB.187.3.862-871.2005

    Article  Google Scholar 

  127. 127.

    Kather B, Stingl K, Van Der Rest ME et al (2000) Another unusual type of citric acid cycle enzyme in Helicobacter pylori: The malate:quinone oxidoreductase. J Bacteriol 182:3204–3209. https://doi.org/10.1128/JB.182.11.3204-3209.2000

    Article  Google Scholar 

  128. 128.

    Maher MJ, Herath AS, Udagedara SR, Dougan DA, Truscott KN (2018) Crystal structure of bacterial succinate:quinone oxidoreductase flavoprotein SdhA in complex with its assembly factor SdhE. Proc Natl Acad Sci U S A 115:2982–2987. https://doi.org/10.1073/pnas.1800195115

    Article  Google Scholar 

  129. 129.

    Lo YC, Chen CY, Lee CM, Chang JS (2010) Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. Int J Hydrogen Energy 35:10944–10953. https://doi.org/10.1016/j.ijhydene.2010.07.090

    Article  Google Scholar 

  130. 130.

    Khan MZ, Nizami AS, Rehan M, Ouda OKM, Sultana S, Ismail IM, Shahzad K (2017) Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia. Appl Energy 185:410–420. https://doi.org/10.1016/j.apenergy.2016.11.005

    Article  Google Scholar 

  131. 131.

    Yu Z, Leng X, Zhao S, Ji J, Zhou T, Khan A, Kakde A, Liu P, Li X (2018) A review on the applications of microbial electrolysis cells in anaerobic digestion. Bioresour Technol 255:340–348. https://doi.org/10.1016/j.biortech.2018.02.003

    Article  Google Scholar 

  132. 132.

    Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J 55:427–443. https://doi.org/10.1016/j.aej.2015.10.008

    Article  Google Scholar 

  133. 133.

    Escapa A, Mateos R, Martínez EJ, Blanes J (2016) Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. from laboratory to pilot plant and beyond. Renew Sustain Energy Rev 55:942–956. https://doi.org/10.1016/j.rser.2015.11.029

    Article  Google Scholar 

  134. 134.

    Kumar R, Singh L, Zularisam AW (2016) Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sustain Energy Rev 56:1322–1336. https://doi.org/10.1016/j.rser.2015.12.029

    Article  Google Scholar 

  135. 135.

    Müller N, Worm P, Schink B, Stams AJM, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: From genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499. https://doi.org/10.1111/j.1758-2229.2010.00147.x

    Article  Google Scholar 

  136. 136.

    Westerholm M, Moestedt J, Schnürer A (2016) Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Appl Energy 179:124–135. https://doi.org/10.1016/j.apenergy.2016.06.061

    Article  Google Scholar 

  137. 137.

    Rousseau R, Etcheverry L, Roubaud E, Basséguy R, Délia ML, Bergel A (2020) Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint. Appl Energy 257:113938. https://doi.org/10.1016/j.apenergy.2019.113938

    Article  Google Scholar 

  138. 138.

    Cheng Y, Chong C, Lam M et al (2021) Holistic process evaluation of non-conventional palm oil mill effluent (POME) treatment technologies: A conceptual and comparative review. J Hazard Mater 409:124964. https://doi.org/10.1016/j.jhazmat.2020.124964

    Article  Google Scholar 

  139. 139.

    Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179. https://doi.org/10.1016/S1364-0321(02)00004-7

    Article  Google Scholar 

  140. 140.

    Boodhun BSF, Mudhoo A, Kumar G, Kim SH, Lin CY (2017) Research perspectives on constraints, prospects and opportunities in biohydrogen production. Int J Hydrogen Energy 42:27471–27481. https://doi.org/10.1016/j.ijhydene.2017.04.077

    Article  Google Scholar 

  141. 141.

    Sekoai PT, Daramola MO (2015) Biohydrogen production as a potential energy fuel in South Africa. Biofuel Res J 2:223–226. https://doi.org/10.18331/BRJ2015.2.2.3

    Article  Google Scholar 

  142. 142.

    Shao W, Wang Q, Rupani PF, Krishnan S, Ahmad F, Rezania S, Rashid MA, Sha C, Md Din MF (2020) Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species. Energy 197:117199. https://doi.org/10.1016/j.energy.2020.117199

    Article  Google Scholar 

  143. 143.

    Kaushik A, Mona S (2017) Exploiting Biohydrogen Pathways of Cyanobacteria and Green Algae: An Industrial Production Approach. In: Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi, pp 97–113

  144. 144.

    Nagarajan D, Lee DJ, Chang JS (2019) Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. Int J Hydrogen Energy 44:14362–14379. https://doi.org/10.1016/j.ijhydene.2019.03.066

    Article  Google Scholar 

  145. 145.

    Kamaraj M, Ramachandran KK, Aravind J (2020) Biohydrogen production from waste materials: benefits and challenges. Int J Environ Sci Technol 17:559–576. https://doi.org/10.1007/s13762-019-02577-z

    Article  Google Scholar 

  146. 146.

    Singh A, Rathore D (2017) Exploiting Biohydrogen Pathways of Cyanobacteria and Green Algae: An Industrial Production Approach. In: Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, India, pp 97–113

  147. 147.

    Balat H, Kirtay E (2010) Hydrogen from biomass - Present scenario and future prospects. Int J Hydrogen Energy 35:7416–7426. https://doi.org/10.1016/j.ijhydene.2010.04.137

    Article  Google Scholar 

  148. 148.

    Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: A review. Biomass and Bioenergy 75:101–118. https://doi.org/10.1016/j.biombioe.2015.02.011

    Article  Google Scholar 

  149. 149.

    Soydemir G, keris-Sen UD, Sen U, Gurol MD (2016) Biodiesel production potential of mixed microalgal culture grown in domestic wastewater. Bioprocess Biosyst Eng 39:45–51. https://doi.org/10.1007/s00449-015-1487-3

    Article  Google Scholar 

  150. 150.

    Zhou Z, Yin X, Xu J, Ma L (2012) The development situation of biomass gasification power generation in China. Energy Policy 51:52–57. https://doi.org/10.1016/j.enpol.2012.05.085

    Article  Google Scholar 

  151. 151.

    Shuit SH, Tan KT, Lee KT, Kamaruddin AH (2009) Oil palm biomass as a sustainable energy source : A Malaysian case study. Energy 34:1225–1235. https://doi.org/10.1016/j.energy.2009.05.008

    Article  Google Scholar 

  152. 152.

    Clean Power Indonesia - 700 kWp Biomass Gasifier in Mentawai (Indonesia). https://www.ruralelec.org/project-case-studies/clean-power-indonesia-700-kwp-biomass-gasifier-mentawai-indonesia

  153. 153.

    Fluidized Bed Biomass Gasification with Clay Catalyst

  154. 154.

    Heidrich ES, Edwards SR, Dolfing J, Cotterill SE, Curtis TP (2014) Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Bioresour Technol 173:87–95. https://doi.org/10.1016/j.biortech.2014.09.083

    Article  Google Scholar 

  155. 155.

    Lin C, Wu S, Lin P et al (2010) A pilot-scale high-rate biohydrogen production system with mixed microflora. Int J Hydrogen Energy 36:8758–8764. https://doi.org/10.1016/j.ijhydene.2010.07.115

    Article  Google Scholar 

  156. 156.

    Gottardo M, Micolucci F, Bolzonella D, Uellendahl H, Pavan P (2017) Pilot scale fermentation coupled with anaerobic digestion of food waste - Effect of dynamic digestate recirculation. Renew Energy 114:455–463. https://doi.org/10.1016/j.renene.2017.07.047

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully express their sincere appreciation for the financial support awarded by Ministry of Higher Education, Malaysia (015MA0-052 & 015MA0-104) and conferment of HICoE award to Centre for Biofuel and Biochemical Research (HICoE-CBBR), Universiti Teknologi PETRONAS is duly acknowledged.

Author information

Affiliations

Authors

Contributions

Yee Ho Chai had conceptualised the idea for this review article, performed compilation of the review article and review and editing of the review article. Literature research and data analysis were contributed by Dr Mustakimah Mohamed, Dr Cheng Yoke Wang, Dr Bridgid Lai Fui Chin and Dr Chung Loong Yiin. Prof Dr Suzana Yusup reviewed and edited the article and Dr Lam Man Kee reviewed the article.

Corresponding author

Correspondence to Suzana Yusup.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chai, Y.H., Mohamed, M., Cheng, Y.W. et al. A review on potential of biohydrogen generation through waste decomposition technologies. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01333-z

Download citation

Keywords

  • Biohydrogen;
  • Thermochemical conversion;
  • Biochemical conversion;
  • Decarbonisation;
  • Waste decomposition;
  • Green technology