Skip to main content
Log in

Recent advances in the production and value addition of selected hydrophobic analogs of biomass-derived 5-(hydroxymethyl)furfural

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

5-(Hydroxymethyl)furfural (HMF), produced by the acid-catalyzed dehydration of biomass-derived hexoses, is a well-recognized renewable chemical intermediate in the biorefinery research for the productions of fuels, chemicals, and materials. However, the inherent hydrophilicity and poor stability of HMF continue to disfavor its production and value addition from an economic standpoint. In this regard, the superior thermal and hydrolytic stability of the hydrophobic analogs of HMF simplify their isolation and purification from the aqueous (or polar) reaction media while enhancing their shelf life. The analogs show promises in supplanting HMF from its derivative chemistry. The halogenated derivatives of HMF, such as 5-(chloromethyl)furfural (CMF) and 5-(bromomethyl)furfural (BMF), can be produced directly from biomass in good isolated yields. The non-halogenated, hydrophobic derivatives of HMF include esters such as 5-(formyloxymethyl)furfural (FMF) and 5-(acetoxymethyl)furfural (AMF), obtained by the dehydration of carbohydrates in suitable carboxylic acids. The ethers of HMF, such as 5-(ethoxymethyl)furfural (EMF), can be produced directly by the acid-catalyzed alcoholysis of biomass. In addition, partially oxidized or reduced derivatives of HMF, such as 2,5-diformylfuran (DFF) and 5-methylfurfural (5MF), have also found significant interests as hydrophobic analogs of HMF. The production and value addition of various lipophilic analogs of HMF are rather scattered in the literature, and no comprehensive review is available in this area to date. This technical review attempts to fill that gap with up-to-date information with a critical analysis of the achievements and challenges. In this review, the production and derivative chemistry of various hydrophobic analogs of HMF have been discussed. The relative advantages and challenges associated with the preparation and value addition of various hydrophobic analogs of HMF are highlighted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

References

  1. Carus M, Dammer L, Raschka A, Skoczinski P (2020) Renewable carbon: key to a sustainable and future-oriented chemical and plastic industry: definition, strategy, measures and potential. Greenh Gases Sci Technol 10:488–505. https://doi.org/10.1002/ghg.1992

    Article  Google Scholar 

  2. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 314:1598–1600. https://doi.org/10.1126/science.1133306

    Article  Google Scholar 

  3. Bozell JJ (2008) Feedstocks for the future - biorefinery production of chemicals from renewable carbon. CLEAN - Soil Air Water 36:641–647. https://doi.org/10.1002/clen.200800100

    Article  Google Scholar 

  4. Sharma G, Kaur M, Punj S, Singh K (2020) Biomass as a sustainable resource for value-added modern materials: a review. Biofuels Bioprod Biorefin 14:673–695. https://doi.org/10.1002/bbb.2079

    Article  Google Scholar 

  5. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  Google Scholar 

  6. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sust Energ Rev 43:1427–1445. https://doi.org/10.1016/j.rser.2014.11.092

    Article  Google Scholar 

  7. Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20:1727–1737. https://doi.org/10.1021/ef060097w

    Article  Google Scholar 

  8. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel. 89:913–933. https://doi.org/10.1016/j.fuel.2009.10.022

    Article  Google Scholar 

  9. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/C5PY00263J

    Article  Google Scholar 

  10. Tursi A (2019) A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J 6:962–979. https://doi.org/10.18331/BRJ2019.6.2.3

    Article  Google Scholar 

  11. Raveendran K, Ganesh A, Khilar KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel. 75:987–998. https://doi.org/10.1016/0016-2361(96)00030-0

    Article  Google Scholar 

  12. Sorokina KN, Taran OP, Medvedeva TB, Samoylova YV, Piligaev AV, Parmon VN (2017) Cellulose biorefinery based on a combined catalytic and biotechnological approach for production of 5-HMF and ethanol. ChemSusChem. 10:562–574. https://doi.org/10.1002/cssc.201601244

    Article  Google Scholar 

  13. Jing Y, Guo Y, Xia Q, Liu X, Wang Y (2019) Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem. 5:2520–2546. https://doi.org/10.1016/j.chempr.2019.05.022

    Article  Google Scholar 

  14. Zhou C-H, Xia X, Lin C-X, Tong D-S, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40:5588–5617. https://doi.org/10.1039/c1cs15124j

    Article  Google Scholar 

  15. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754. https://doi.org/10.1039/c0gc00401d

    Article  Google Scholar 

  16. Verevkin SP, Emel’yanenko VN, Stepurko EN, Ralys RV, Zaitsau DH, Stark A (2009) Biomass-derived platform chemicals: thermodynamic studies on the conversion of 5-hydroxymethylfurfural into bulk intermediates. Ind Eng Chem Res 48:10087–10093. https://doi.org/10.1021/ie901012g

    Article  Google Scholar 

  17. Dull G (1895) Chemiker-Zeitung 216

  18. Shapla UM, Md S, Alam N, Khalil MI, Gan SH (2018) 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Cent J 12:35. https://doi.org/10.1186/s13065-018-0408-3

    Article  Google Scholar 

  19. Out of 13448 literature references on ‘5-hydroxymethylfurfural’, 12503 were published during 1990–2020, SciFinder research, accessed on October 13, (2020)

  20. Kong X, Zhu Y, Fang Z, Kozinski JA, Butler IS, Xu L, Song H, Wei X (2018) Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chem 20:3657–3682. https://doi.org/10.1039/C8GC00234G

    Article  Google Scholar 

  21. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597. https://doi.org/10.1021/cr300182k

    Article  Google Scholar 

  22. Xia H, Xu S, Hu H, An J, Li C (2018) Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Adv 8:30875–30886. https://doi.org/10.1039/C8RA05308A

    Article  Google Scholar 

  23. Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. In: ARKIVOC, i, 17. https://doi.org/10.3998/ark.5550190.0002.102

    Chapter  Google Scholar 

  24. Thoma C, Konnerth J, Sailer-Kronlachner W, Solt P, Rosenau T, Herwijnen HWG (2020) Current situation of the challenging scale-up development of Hydroxymethylfurfural production. ChemSusChem. 13:3544–3564. https://doi.org/10.1002/cssc.202000581

    Article  Google Scholar 

  25. Mukherjee A, Dumont M-J, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183. https://doi.org/10.1016/j.biombioe.2014.11.007

    Article  Google Scholar 

  26. Shen H, Shan H, Liu L (2020) Evolution process and controlled synthesis of humins with 5-Hydroxymethylfurfural (HMF) as model molecule. ChemSusChem. 13:513–519. https://doi.org/10.1002/cssc.201902799

    Article  Google Scholar 

  27. Galkin KI, Krivodaeva EA, Romashov LV, Zalesskiy SS, Kachala VV, Burykina JV, Ananikov VP (2016) Critical influence of 5-Hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis. Angew Chem Int Ed 55:8338–8342. https://doi.org/10.1002/anie.201602883

    Article  Google Scholar 

  28. Menegazzo F, Ghedini E, Signoretto M (2018) 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules. 23:2201. https://doi.org/10.3390/molecules23092201

    Article  Google Scholar 

  29. Sanda K, Rigal L, Gaset A (2007) Optimisation of the synthesis of 5-chloromethyl-2-furancarboxaldehyde from D-fructose dehydration and in-situ chlorination of 5-hydroxymethyl-2-furancarboxaldehyde. J Chem Technol Biotechnol 55:139–145. https://doi.org/10.1002/jctb.280550207

    Article  Google Scholar 

  30. Mascal M, Nikitin EB (2010) High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via5-(chloromethyl)furfural. Green Chem 12:370–373. https://doi.org/10.1039/B918922J

    Article  Google Scholar 

  31. Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2021 ACD/Labs), SciFinder search (Accessed on January 12, 2021), (2021)

  32. Gomes FNDC, Pereira LR, Ribeiro NFP, Souza MMVM (2015) Production of 5-hydroxymethylfurfural(HMF) via fructose dehydration: effect of solvent and salting out. Braz J Chem Eng 32:119–126. https://doi.org/10.1590/0104-6632.20150321s00002914

    Article  Google Scholar 

  33. Oriez V, Peydecastaing J, Pontalier P-Y (2019) Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: conditions, yields, and purities. Molecules. 24:4273. https://doi.org/10.3390/molecules24234273

    Article  Google Scholar 

  34. Fenton HJH, Gostling M (1901) LXXXV.—Derivatives of methylfurfural. J Chem Soc Trans 79:807–816. https://doi.org/10.1039/CT9017900807

    Article  Google Scholar 

  35. Cooper WF, Nuttall WH (1911) CXXIX.—Some reactions of ω-bromomethylfurfuraldehyde. J Chem Soc Trans 99:1193–1200. https://doi.org/10.1039/CT9119901193

    Article  Google Scholar 

  36. Fenton HJH, Robinson F (1909) CXLVIII.—Homologues of furfuraldehyde. J Chem Soc Trans 95:1334–1340. https://doi.org/10.1039/CT9099501334

    Article  Google Scholar 

  37. Haworth WN, Jones WGM (1944) 183. The conversion of sucrose into furan compounds. Part I. 5-Hydroxymethylfurfuraldehyde and some derivatives. J Chem Soc Resumed:667–670. https://doi.org/10.1039/JR9440000667

  38. Hamada K, Yoshihara H, Suzukamo G (1982) An improved method for the conversion of saccharides into furfural derivatives. Chem Lett 11:617–618. https://doi.org/10.1246/cl.1982.617

    Article  Google Scholar 

  39. Szmant HH, Chundury DD (1981) The preparation of 5-chloromethylfurfuraldehyde from high fructose corn syrup and other carbohydrates. J Chem Technol Biotechnol 31:205–212. https://doi.org/10.1002/jctb.503310128

    Article  Google Scholar 

  40. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem 120:8042–8044. https://doi.org/10.1002/ange.200801594

    Article  Google Scholar 

  41. Mascal M, Nikitin EB (2009) Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem. 2:859–861. https://doi.org/10.1002/cssc.200900136

    Article  Google Scholar 

  42. Mascal M, Nikitin EB (2009) Towards the efficient, total glycan utilization of biomass. ChemSusChem. 2:423–426. https://doi.org/10.1002/cssc.200900071

    Article  Google Scholar 

  43. Brasholz M, Känel KV, Hornung CH, Saubern S, Tsanaktsidis J (2011) Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem 13:1114–1117. https://doi.org/10.1039/c1gc15107j

    Article  Google Scholar 

  44. Kohl TM, Bizet B, Kevan P, Sellwood C, Tsanaktsidis J, Hornung CH (2017) Efficient synthesis of 5-(chloromethyl)furfural (CMF) from high fructose corn syrup (HFCS) using continuous flow processing. React Chem Eng 2:541–549. https://doi.org/10.1039/c7re00039a

    Article  Google Scholar 

  45. Jadhav H, Pedersen CM, Sølling T, Bols M (2011) 3-Deoxy-glucosone is an intermediate in the formation of furfurals from D-glucose. ChemSusChem. 4:1049–1051. https://doi.org/10.1002/cssc.201100249

    Article  Google Scholar 

  46. Breeden SW, Clark JH, Farmer TJ, MacQuarrie DJ, Meimoun JS, Nonne Y, Reid JESJ (2013) Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural. Green Chem 15:72–75. https://doi.org/10.1039/c2gc36290b

    Article  Google Scholar 

  47. Gao W, Li Y, Xiang Z, Chen K, Yang R, Argyropoulos DS (2013) Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic systems. Molecules. 18:7675–7685. https://doi.org/10.3390/molecules18077675

    Article  Google Scholar 

  48. Wu F, Yang R, Yang F (2015) Metal chlorides as effective catalysts for the one-pot conversion of lignocellulose into 5- chloromethylfurfural (5-CMF). BioResources 10:3293–3301. https://doi.org/10.15376/biores.10.2.3293-3301

    Article  Google Scholar 

  49. Zuo M, Li Z, Jiang Y, Tang X, Zeng X, Sun Y, Lin L (2016) Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides. RSC Adv 6:27004–27007. https://doi.org/10.1039/c6ra00267f

    Article  Google Scholar 

  50. Onkarappa SB, Dutta S (2019) Phase transfer catalyst assisted one-pot synthesis of 5-(chloromethyl)furfural from biomass-derived carbohydrates in a biphasic batch reactor. ChemistrySelect. 4:7502–7506. https://doi.org/10.1002/slct.201901347

    Article  Google Scholar 

  51. Meller E, Aviv A, Aizenshtat Z, Sasson Y (2016) Preparation of halogenated furfurals as intermediates in the carbohydrates to biofuel process. RSC Adv 6:36069–36076. https://doi.org/10.1039/C6RA06050A

    Article  Google Scholar 

  52. Zhang X, Eren NM, Kreke T, Mosier NS, Engelberth AS, Kilaz G (2017) Concentrated HCl catalyzed 5-(chloromethyl)furfural production from corn Stover of varying particle sizes. Bioenergy Res 10:1018–1024. https://doi.org/10.1007/s12155-017-9860-5

    Article  Google Scholar 

  53. N.S. Bhat, N. Vinod, S.B. Onkarappa, S. Dutta, (2020), Hydrochloric acid-catalyzed coproduction of furfural and 5-(chloromethyl)furfural assisted by a phase transfer catalyst, Carbohydr. Res. 496. https://doi.org/10.1016/j.carres.2020.108105

  54. Lane DR, Mascal M, Stroeve P (2016) Experimental studies towards optimization of the production of 5-(chloromethyl)furfural (CMF) from glucose in a two-phase reactor. Renew Energy 85:994–1001. https://doi.org/10.1016/j.renene.2015.07.032

    Article  Google Scholar 

  55. S.M. Browning, M.N. Masuno, I.J. Bissell, B.F. Nicholson, Solid forms of 5-(halomethyl)furfural and methods for preparing thereof, US9718798B2, 2017

  56. P. Mikochik, A. Cahana, E. Nikitin, J. Standiford, K. Ellis, L. Zhang, T. George, Efficient, high-yield conversion of saccharides in a pure or crude form to 5-(chloromethyl)-2-furaldehyde, US9102644B2, 2015

  57. M. Mascal, High-yield conversion of cellulosic biomass into furanic biofuels and value-added products, US7829732B2, 2010

  58. J.-K. Cho, S.-Y. Kim, D.-H. Lee, B.R. Kim, J.-W. Jung, Method for preparing 5-chloromethyl-2-furfural using galactan derived from seaweed in two component phase, US8871958B2, 2014

  59. Howard J, Rackemann DW, Zhang Z, Moghaddam L, Bartley JP, Doherty WOS (2016) Effect of pretreatment on the formation of 5-chloromethyl furfural derived from sugarcane bagasse. RSC Adv 6:5240–5248. https://doi.org/10.1039/c5ra20203e

    Article  Google Scholar 

  60. S.M. Browning, I.J. Bissell, R.L. Smith, M.N. MASUNO, B.F. Nicholson, A.B. Wood, Methods for producing 5-(halomethyl) furfural, US9388151B2, 2016

  61. M.N. MASUNO, I.J. Bissell, R.L. Smith, B. Higgins, A.B. Wood, Utilizing a multiphase reactor for the conversion of biomass to produce substituted furans, US9637463B2, 2017

  62. Rinkes IJ (1934) 5-Methyfurfural. Org Synth 14:62. https://doi.org/10.15227/orgsyn.014.0062

    Article  Google Scholar 

  63. Meller E, Sasson Y, Aizenshtat Z (2016) Palladium catalyzed hydrogenation of biomass derived halogenated furfurals. RSC Adv 6:103149–103159. https://doi.org/10.1039/C6RA21472J

    Article  Google Scholar 

  64. Dutta S, Mascal M (2014) Novel pathways to 2,5-dimethylfuran via biomass-derived 5-(chloromethyl)furfural. ChemSusChem. 7:3028–3030. https://doi.org/10.1002/cssc.201402702

    Article  Google Scholar 

  65. Onkarappa SB, Dutta S (2019) High-yielding synthesis of 5-(alkoxymethyl)furfurals from biomass-derived 5-(halomethyl)furfural (X=Cl, Br). ChemistrySelect. 4:5540–5543. https://doi.org/10.1002/slct.201900279

    Article  Google Scholar 

  66. Viil I, Bredihhin A, Maeorg U, Vares L (2014) Preparation of potential biofuel 5-ethoxymethylfurfural and other 5-alkoxymethylfurfurals in the presence of oil shale ash. RSC Adv 4:5689–5693. https://doi.org/10.1039/c3ra46570e

    Article  Google Scholar 

  67. C. Laugel, B. Estrine, J. Le Bras, N. Hoffmann, S. Marinkovic, J. Muzart, NaBr/DMSO-induced synthesis of 2,5-diformylfuran from fructose or 5-(hydroxymethyl)furfural, ChemCatChem. (2014). https://doi.org/10.1002/cctc.201400023,

  68. Vicente AI, Coelho JAS, Simeonov SP, Lazarova HI, Popova MD, Afonso CAM (2017) Oxidation of 5-chloromethylfurfural (CMF) to 2,5-diformylfuran (DFF). Molecules. 22:329. https://doi.org/10.3390/molecules22020329

    Article  Google Scholar 

  69. Shinde SH, Rode CV (2018) Friedel-Crafts alkylation over Zr-Mont catalyst for the production of diesel fuel precursors. ACS Omega 3:5491–5501. https://doi.org/10.1021/acsomega.8b00560

    Article  Google Scholar 

  70. S. Dutta, N.S. Bhat, Catalytic synthesis of renewable p-xylene from biomass-derived 2,5-dimethylfuran: a mini review, Biomass Convers. Biorefinery. (2020). https://doi.org/10.1007/s13399-020-01042-z,

  71. Requies JM, Frias M, Cuezva M, Iriondo A, Agirre I, Viar N (2018) Hydrogenolysis of 5-hydroxymethylfurfural to produce 2,5-dimethylfuran over ZrO2 supported Cu and RuCu catalysts. Ind Eng Chem Res 57:11535–11546. https://doi.org/10.1021/acs.iecr.8b01234

    Article  Google Scholar 

  72. Hamada K, Yoshihara H, Suzukamo G (2001) Novel synthetic route to 2,5-disubstituted furan derivatives through surface active agent-catalysed dehydration of D(−)-fructose. J Oleo Sci 50:533–536. https://doi.org/10.5650/jos.50.533

    Article  Google Scholar 

  73. Dutta S, Wu L, Mascal M (2015) Production of 5-(chloromethyl)furan-2-carbonyl chloride and furan-2,5-dicarbonyl chloride from biomass-derived 5-(chloromethyl)furfural (CMF). Green Chem 17:3737–3739. https://doi.org/10.1039/c5gc00936g

    Article  Google Scholar 

  74. P. Mikochik, A. Cahana, Conversion of 5-(chloromethyl)-2-furaldehyde into 5-methyl-2-furoic acid and derivatives thereof, US9108940B2, 2015

  75. Dai L, Qiu Y, Xu Y-Y, Ye S (2020) Biomass transformation of cellulose via N-heterocyclic carbene-catalyzed umpolung of 5-(chloromethyl)furfural. Cell Rep Phys Sci 1:100071. https://doi.org/10.1016/j.xcrp.2020.100071

    Article  Google Scholar 

  76. Mascal M, Dutta S (2011) Synthesis of ranitidine (Zantac) from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:3101–3102. https://doi.org/10.1039/c1gc15537g

    Article  Google Scholar 

  77. Chang F, Hsu W-H, Mascal M (2015) Synthesis of anti-inflammatory furan fatty acids from biomass-derived 5-(chloromethyl)furfural. Sustain Chem Pharm 1:14–18. https://doi.org/10.1016/j.scp.2015.09.002

    Article  Google Scholar 

  78. Chang F, Dutta S, Becnel JJ, Estep AS, Mascal M (2014) Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl)furfural. J Agric Food Chem 62:476–480. https://doi.org/10.1021/jf4045843

    Article  Google Scholar 

  79. Karlinskii B, Romashov L, Galkin K, Kislitsyn P, Ananikov V (2019) Synthesis of 2-azidomethyl-5-ethynylfuran: a new bio-derived self-clickable building block. Synthesis. 51:1235–1242. https://doi.org/10.1055/s-0037-1610414

    Article  Google Scholar 

  80. Salim KMM, Shamsiya A, Damodaran B (2018) Green synthesis of fluorescent peptidomimetic triazoles from biomass-derived 5-(chloromethyl)furfural. ChemistrySelect. 3:11141–11146. https://doi.org/10.1002/slct.201802310

    Article  Google Scholar 

  81. H. Miao, N. Shevchenko, A.L. Otsuki, M. Mascal, (2020), Diversification of the renewable furanic platform via 5-(chloromethyl)furfural-based carbon nucleophiles, ChemSusChem. cssc.202001718. https://doi.org/10.1002/cssc.202001718

  82. Mascal M, Dutta S (2011) Synthesis of the natural herbicide δ-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:40–41. https://doi.org/10.1039/C0GC00548G

    Article  Google Scholar 

  83. Mascal M, Nikitin EB (2010) Co-processing of carbohydrates and lipids in oil crops to produce a hybrid biodiesel. Energy Fuel 24:2170–2171. https://doi.org/10.1021/ef9013373

    Article  Google Scholar 

  84. Christensen E, Williams A, Paul S, Burton S, McCormick RL (2011) Properties and performance of levulinate esters as diesel blend components. Energy Fuel 25:5422–5428. https://doi.org/10.1021/ef201229j

    Article  Google Scholar 

  85. S.B. Onkarappa, N.S. Bhat, S. Dutta, Preparation of alkyl levulinates from biomass-derived 5-(halomethyl)furfural (X = Cl, Br), furfuryl alcohol, and angelica lactone using silica-supported perchloric acid as a heterogeneous acid catalyst, Biomass Convers. Biorefinery. (2020). https://doi.org/10.1007/s13399-020-00791-1,

  86. Saska J, Li Z, Otsuki AL, Wei J, Fettinger JC, Mascal M (2019) Butenolide derivatives of biobased furans: sustainable synthetic dyes. Angew Chem 131:17453–17456. https://doi.org/10.1002/ange.201911387

    Article  Google Scholar 

  87. Cottier L, Descotes G, Eymard L, Rapp K (1995) Syntheses of γ-Oxo acids or γ-Oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis. 1995:303–306. https://doi.org/10.1055/s-1995-3897

    Article  Google Scholar 

  88. Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew Sust Energ Rev 94:340–362. https://doi.org/10.1016/j.rser.2018.06.016

    Article  Google Scholar 

  89. Antonetti C, Licursi D, Fulignati S, Valentini G, Raspolli Galletti AM (2016) New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts. 6:196. https://doi.org/10.3390/catal6120196

    Article  Google Scholar 

  90. Morone A, Apte M, Pandey RA (2015) Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sust Energ Rev 51:548–565. https://doi.org/10.1016/j.rser.2015.06.032

    Article  Google Scholar 

  91. Mascal M, Dutta S (2014) Chemical-catalytic approaches to the production of furfurals and levulinates from biomass. In: Nicholas KM (ed) Sel. Catal. Renew. Feedstock Chem. Springer International Publishing, Cham, pp 41–83. https://doi.org/10.1007/128_2014_536

    Chapter  Google Scholar 

  92. Mascal M (2019) 5-(Chloromethyl)furfural (CMF): a platform for transforming cellulose into commercial products. ACS Sustain Chem Eng 7:5588–5601. https://doi.org/10.1021/acssuschemeng.8b06553

    Article  Google Scholar 

  93. Mascal M (2015) 5-(Chloromethyl)furfural is the new HMF: functionally equivalent but more practical in terms of its production from biomass. ChemSusChem. 8:3391–3395. https://doi.org/10.1002/cssc.201500940

    Article  Google Scholar 

  94. Fenton HJH, Gostling M (1899) XLI.—Bromomethylfurfuraldehyde. J Chem Soc Trans 75:423–433. https://doi.org/10.1039/CT8997500423

    Article  Google Scholar 

  95. Hibbert H, Hill HS (1923) Studies on cellulose chemistry II. The action of dry hydrogen bromide on carbohydrates and polysaccharides. J Am Chem Soc 45:176–182. https://doi.org/10.1021/ja01654a026

    Article  Google Scholar 

  96. Kumari N, Olesen JK, Pedersen CM, Bols M (2011) Synthesis of 5-Bromomethylfurfural from cellulose as a potential intermediate for biofuel. Eur J Org Chem 2011:1266–1270. https://doi.org/10.1002/ejoc.201001539

    Article  Google Scholar 

  97. Bredihhin A, Mäeorg U, Vares L (2013) Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydr Res 375:63–67. https://doi.org/10.1016/j.carres.2013.04.002

    Article  Google Scholar 

  98. Yoo CG, Zhang S, Pan X (2017) Effective conversion of biomass into bromomethylfurfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system. RSC Adv 7:300–308. https://doi.org/10.1039/C6RA25025D

    Article  Google Scholar 

  99. Le K, Zuo M, Song X, Zeng X, Tang X, Sun Y, Lei T, Lin L (2017) An effective pathway for 5-brominemethylfurfural synthesis from biomass sugars in deep eutectic solvent: an effective pathway for 5-brominemethylfurfural synthesis. J Chem Technol Biotechnol 92:2929–2933. https://doi.org/10.1002/jctb.5312

    Article  Google Scholar 

  100. Mascal M (2017) 5-(Halomethyl)furfurals from biomass and biomass-derived sugars. Prod Platf Chem Sustain Resour:123–140. https://doi.org/10.1007/978-981-10-4172-3_4

  101. Peng Y, Li X, Gao T, Li T, Yang W (2019) Preparation of 5-methylfurfural from starch in one step by iodide mediated metal-free hydrogenolysis. Green Chem 21:4169–4177. https://doi.org/10.1039/C9GC01645G

    Article  Google Scholar 

  102. Liu X, Wang R (2018) Upgrading of carbohydrates to the biofuel candidate 5-ethoxymethylfurfural (EMF). Int J Chem Eng 2018:1–10. https://doi.org/10.1155/2018/2316939

    Article  Google Scholar 

  103. B. Chen, G. Yan, G. Chen, Y. Feng, X. Zeng, Y. Sun, X. Tang, T. Lei, L. Lin, (2020), Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural, BMC Energy. 2. https://doi.org/10.1186/s42500-020-00012-5

  104. Alipour S, Omidvarborna H, Kim D-S (2017) A review on synthesis of alkoxymethyl furfural, a biofuel candidate. Renew Sust Energ Rev 71:908–926. https://doi.org/10.1016/j.rser.2016.12.118

    Article  Google Scholar 

  105. Xu G, Chen B, Zheng Z, Li K, Tao H (2017) One-pot ethanolysis of carbohydrates to promising biofuels: 5-ethoxymethylfurfural and ethyl levulinate: one-pot ethanolysis of carbohydrates to biofuels. Asia Pac J Chem Eng 12:527–535. https://doi.org/10.1002/apj.2095

    Article  Google Scholar 

  106. Xu G, Chen B, Zhang S, Wang D, Li K (2018) Process optimization on 5-ethoxymethylfurfural production from cellulose catalyzed by extremely low acid in one-pot reaction, Nongye Gongcheng XuebaoTransactions Chin. Soc Agric Eng 34:225–231. https://doi.org/10.11975/j.issn.1002-6819.2018.19.029

    Article  Google Scholar 

  107. Chen B, Xu G, Chang C, Zheng Z, Wang D, Zhang S, Li K, Zou C (2019) Efficient one-pot production of biofuel 5-ethoxymethylfurfural from corn Stover: optimization and kinetics. Energy Fuel 33:4310–4321. https://doi.org/10.1021/acs.energyfuels.9b00357

    Article  Google Scholar 

  108. Bai Y, Wei L, Yang M, Chen H, Holdren S, Zhu G, Tran DT, Yao C, Sun R, Pan Y, Liu D (2018) Three-step cascade over a single catalyst: synthesis of 5-(ethoxymethyl)furfural from glucose over a hierarchical lamellar multi-functional zeolite catalyst. J Mater Chem A 6:7693–7705. https://doi.org/10.1039/C8TA01242C

    Article  Google Scholar 

  109. Bing L, Zhang Z, Deng K (2012) Efficient one-pot synthesis of 5-(Ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst. Ind Eng Chem Res 51:15331–15336. https://doi.org/10.1021/ie3020445

    Article  Google Scholar 

  110. Srinivasa Rao B, Dhana Lakshmi D, Krishna Kumari P, Rajitha P, Lingaiah N (2020) Dehydrative etherification of carbohydrates to 5-ethoxymethylfurfural over SBA-15-supported Sn-modified heteropolysilicate catalysts. Sustain Energy Fuels 4:3428–3437. https://doi.org/10.1039/D0SE00509F

    Article  Google Scholar 

  111. Li H, Govind KS, Kotni R, Shunmugavel S, Riisager A, Yang S (2014) Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres. Energy Convers Manag 88:1245–1251. https://doi.org/10.1016/j.enconman.2014.03.037

    Article  Google Scholar 

  112. Thombal RS, Jadhav VH (2016) Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids. Tetrahedron Lett 57:4398–4400. https://doi.org/10.1016/j.tetlet.2016.08.061

    Article  Google Scholar 

  113. Zhang J, Dong K, Luo W, Guan H (2018) Catalytic upgrading of carbohydrates into 5-ethoxymethylfurfural using SO3H functionalized hyper-cross-linked polymer based carbonaceous materials. Fuel. 234:664–673. https://doi.org/10.1016/j.fuel.2018.07.060

    Article  Google Scholar 

  114. Karnjanakom S, Maneechakr P (2019) Designs of linear-quadratic regression models for facile conversion of carbohydrate into high value (5-(ethoxymethyl)furan-2-carboxaldehyde) fuel chemical. Energy Convers Manag 196:410–417. https://doi.org/10.1016/j.enconman.2019.06.015

    Article  Google Scholar 

  115. Kumar A, Srivastava R (2019) FeVO4 decorated –SO3H functionalized polyaniline for direct conversion of sucrose to 2,5-diformylfuran & 5-ethoxymethylfurfural and selective oxidation reaction. Mol Catal 465:68–79. https://doi.org/10.1016/j.mcat.2018.12.017

    Article  Google Scholar 

  116. Guo H, Qi X, Hiraga Y, Aida TM, Smith RL (2017) Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chem Eng J 314:508–514. https://doi.org/10.1016/j.cej.2016.12.008

    Article  Google Scholar 

  117. Guo H, Duereh A, Hiraga Y, Aida TM, Qi X, Smith RL (2017) Perfect recycle and mechanistic role of hydrogen sulfate ionic liquids as additive in ethanol for efficient conversion of carbohydrates into 5-ethoxymethylfurfural. Chem Eng J 323:287–294. https://doi.org/10.1016/j.cej.2017.04.111

    Article  Google Scholar 

  118. Gawade AB, Yadav GD (2018) Microwave assisted synthesis of 5-ethoxymethylfurfural in one pot from d-fructose by using deep eutectic solvent as catalyst under mild condition. Biomass Bioenergy 117:38–43. https://doi.org/10.1016/j.biombioe.2018.07.008

    Article  Google Scholar 

  119. Liu B, Zhang Z, Huang K, Fang Z (2013) Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl3. Fuel. 113:625–631. https://doi.org/10.1016/j.fuel.2013.06.015

    Article  Google Scholar 

  120. Hu L, Lin L, Wu Z, Zhou S, Liu S (2017) Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renew Sust Energ Rev 74:230–257. https://doi.org/10.1016/j.rser.2017.02.042

    Article  Google Scholar 

  121. Kumar K, Dahiya A, Patra T, Upadhyayula S (2018) Upgrading of HMF and biomass-derived acids into HMF esters using bifunctional ionic liquid catalysts under solvent free conditions. ChemistrySelect. 3:6242–6248. https://doi.org/10.1002/slct.201800903

    Article  Google Scholar 

  122. Xiong C, Sun Y, Du J, Chen W, Si Z, Gao H, Tang X, Zeng X (2018) Efficient conversion of fructose to 5-[(formyloxy)methyl]furfural by reactive extraction and in-situ esterification. Korean J Chem Eng 35:1312–1318. https://doi.org/10.1007/s11814-018-0025-9

    Article  Google Scholar 

  123. Hillmann H, Mattes J, Brockhoff A, Dunkel A, Meyerhof W, Hofmann T (2012) Sensomics analysis of taste compounds in balsamic vinegar and discovery of 5-acetoxymethyl-2-furaldehyde as a novel sweet taste modulator. J Agric Food Chem 60:9974–9990. https://doi.org/10.1021/jf3033705

    Article  Google Scholar 

  124. N.R. Bocanegra, J.R.D. la Rosa, C.J.L. Ortiz, P.C. González, H.C. Greenwell, V.E.B. Almaráz, L.S. Rangel, B. Alcántar-Vázquez, V. Rodríguez-González, (2019), D.A.D.H.D. Río, Catalytic conversion of 5-hydroxymethylfurfural (5-HMF) over Pd-Ru/FAU zeolite catalysts, Catal. Today. https://doi.org/10.1016/j.cattod.2019.11.032

  125. Perez-Bustos HF, Lucio-Ortiz CJ, de la Rosa JR, de Haro del Río DA, Sandoval-Rangel L, Martínez-Vargas DX, Maldonado CS, Rodriguez-González V, Garza-Navarro MA, Morales-Leal FJ (2019) Synthesis and characterization of bimetallic catalysts Pd-Ru and Pt-Ru supported on γ-alumina and zeolite FAU for the catalytic transformation of HMF. Fuel. 239:191–201. https://doi.org/10.1016/j.fuel.2018.10.001

    Article  Google Scholar 

  126. Besemer AC, Van der lugt JP, Doddema HJ (1993) Enzymatic synthesis of Hydroxymethylfurfural esters. In: Fuchs A (ed) Stud. Elsevier, Plant Sci, pp 161–166. https://doi.org/10.1016/B978-0-444-89369-7.50027-0

    Chapter  Google Scholar 

  127. Krystof M, Perez-Sanchez M, Maria PDD (2013) Lipase-catalyzed (trans)esterification of 5-hydroxymethylfurfural and separation from HMF esters using deep-eutectic solvents. ChemSusChem. 6:630–634. https://doi.org/10.1002/cssc.201200931

    Article  Google Scholar 

  128. Jogia MK, Vakamoce V, Weavers RT (1985) Synthesis of some furfural and syringic acid derivatives. Aust J Chem 38:1009–1016. https://doi.org/10.1071/ch9851009

    Article  Google Scholar 

  129. Prieto G (2017) Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis. ChemSusChem. 10:1056–1070. https://doi.org/10.1002/cssc.201601591

    Article  Google Scholar 

  130. Gamble A (2019) Ullmann’s encyclopedia of industrial chemistry. Charlest Advis 20:46–50. https://doi.org/10.5260/chara.20.4.46

    Article  Google Scholar 

  131. Berry SK, Gramshaw JW (1986) Some new volatile compounds from the non-enzymic browning reaction of glucose-glutamic acid system. Z Für Lebensm-Unters Forsch 182:219–223. https://doi.org/10.1007/BF01042132

    Article  Google Scholar 

  132. Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Ed 49:6616–6618. https://doi.org/10.1002/anie.201002267

    Article  Google Scholar 

  133. Sun Y, Lin LU (2010) Hydrolysis behavior of bamboo fiber in formic acid reaction system. J Agric Food Chem 58:2253–2259. https://doi.org/10.1021/jf903731s

    Article  Google Scholar 

  134. Du Z, Ma J, Wang F, Liu J, Xu J (2011) Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chem 13:554–557. https://doi.org/10.1039/c0gc00837k

    Article  Google Scholar 

  135. Grasset FL, Katryniok B, Paul S, Nardello-Rataj V, Pera-Titus M, Clacens J-M, Campo FD, Dumeignil F (2013) Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over intercalated vanadium phosphate oxides. RSC Adv 3:9942–9948. https://doi.org/10.1039/C3RA41890A

    Article  Google Scholar 

  136. Gupta D, Ahmad E, Pant KK, Saha B (2017) Efficient utilization of potash alum as a green catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars. RSC Adv 7:41973–41979. https://doi.org/10.1039/c7ra07147g

    Article  Google Scholar 

  137. Zhou X, Rauchfuss TB (2013) Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem. 6:383–388. https://doi.org/10.1002/cssc.201200718

    Article  Google Scholar 

  138. Jiang Y, Chen W, Sun Y, Li Z, Tang X, Zeng X, Lin L, Liu S (2016) One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: a novel alternative platform chemical. Ind Crop Prod 83:408–413. https://doi.org/10.1016/j.indcrop.2016.01.004

    Article  Google Scholar 

  139. Zhang J, Yan N (2016) Formic acid-mediated liquefaction of chitin. Green Chem 18:5050–5058. https://doi.org/10.1039/c6gc01053a

    Article  Google Scholar 

  140. Dutta S (2020) Production of 5-(formyloxymethyl)furfural from biomass-derived sugars using mixed acid catalysts and upgrading into value-added chemicals. Carbohydr Res 108140:108140. https://doi.org/10.1016/j.carres.2020.108140

    Article  Google Scholar 

  141. Jia W, Si Z, Feng Y, Zhang X, Zhao X, Sun Y, Sun Y, Sun Y, Tang X, Zeng X, Lin L (2020) Oxidation of 5-[(Formyloxy)methyl]furfural to maleic anhydride with atmospheric oxygen using α-MnO2/Cu(NO3)2 as catalysts. ACS Sustain Chem Eng 8:7901–7908. https://doi.org/10.1021/acssuschemeng.0c01144

    Article  Google Scholar 

  142. Si Z, Zhang X, Zuo M, Wang T, Sun Y, Tang X, Zeng X, Lin L (2020) Selective oxidation of 5-formyloxymethylfurfural to 2, 5-furandicarboxylic acid with Ru/C in water solution. Korean J Chem Eng 37:224–230. https://doi.org/10.1007/s11814-019-0422-8

    Article  Google Scholar 

  143. Mitra J, Zhou X, Rauchfuss T (2015) Pd/C-catalyzed reactions of HMF: Decarbonylation, hydrogenation, and hydrogenolysis. Green Chem 17:307–313. https://doi.org/10.1039/c4gc01520g

    Article  Google Scholar 

  144. De S, Dutta S, Saha B (2012) One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem. 5:1826–1833. https://doi.org/10.1002/cssc.201200031

    Article  Google Scholar 

  145. Sun Y, Xiong C, Liu Q, Zhang J, Tang X, Zeng X, Liu S, Lin L (2019) Catalytic transfer hydrogenolysis/hydrogenation of biomass-derived 5-Formyloxymethylfurfural to 2, 5-dimethylfuran over Ni-Cu bimetallic catalyst with formic acid as a hydrogen donor. Ind Eng Chem Res 58:5414–5422. https://doi.org/10.1021/acs.iecr.8b05960

    Article  Google Scholar 

  146. Kang ES, Hong YW, Chae DW, Kim B, Kim B, Kim YJ, Cho JK, Kim YG (2015) From lignocellulosic biomass to furans via 5-acetoxymethylfurfural as an alternative to 5-Hydroxymethylfurfural. ChemSusChem. 8:1179–1188. https://doi.org/10.1002/cssc.201403252

    Article  Google Scholar 

  147. Snider BB, Grabowski JF (2005) Synthesis of (±)-cartorimine. Tetrahedron Lett 46:823–825. https://doi.org/10.1016/j.tetlet.2004.12.007

    Article  Google Scholar 

  148. Dai HL, Shen Q, Zheng JB, Lib JY, Wen R, Li J (2011) Synthesis and biological evaluation of novel indolin-2-one derivatives as protein tyrosine phosphatase 1b inhibitors. Lett Org Chem 8:526–530. https://doi.org/10.2174/157017811796504909

    Article  Google Scholar 

  149. Bicker M, Kaiser D, Ott L, Vogel H (2005) Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids. J Supercrit Fluids 36:118–126. https://doi.org/10.1016/j.supflu.2005.04.004

    Article  Google Scholar 

  150. Carlini C, Patrono P, Galletti AMR, Sbrana G, Zima V (2005) Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Appl Catal A Gen 289:197–204. https://doi.org/10.1016/j.apcata.2005.05.006

    Article  Google Scholar 

  151. Hong Yeon-Woo, Efficient synthesis of 5-O-acetylhydroxymethylfurfural (AcHMF) as an alternative to HMF, PhD Thesis, Seoul National University, 2013

  152. Gavilà L, Esposito D (2017) Cellulose acetate as a convenient intermediate for the preparation of 5-acetoxymethylfurfural from biomass. Green Chem 19:2496–2500. https://doi.org/10.1039/c7gc00975e

    Article  Google Scholar 

  153. Shinde S, Deval K, Chikate R, Rode C (2018) Cascade synthesis of 5-(acetoxymethyl)furfural from carbohydrates over Sn-Mont catalyst. ChemistrySelect. 3:8770–8778. https://doi.org/10.1002/slct.201802040

    Article  Google Scholar 

  154. N.T.T. Huynh, K.W. Lee, J.K. Cho, Y.J. Kim, S.W. Bae, J.S. Shin, S. Shin, Conversion of D-fructose to 5-acetoxymethyl-2-furfural using immobilized lipase and cation exchange resin, Molecules. 24 (2019). https://doi.org/10.3390/molecules24244623

  155. A.J. Sanborn, S.J. Howard, Conversion of carbohydrates to hydroxymethylfurfural (HMF) and derivatives, JP5702836B2, 2015

  156. G.J.M. Gruter, L.E. Manzer, A.S.V.D.S. Dias, F. Dautzenberg, J. Purmova, Hydroxymethylfurfural ethers and esters prepared in ionic liquids, US8314260B2, 2012

  157. G.J.M. Gruter, F. Dautzenberg, Method for the synthesis of organic acid esters of 5-hydroxymethylfurfural and their use, US8242293B2, 2012

  158. B.J. Kim, J.K. Cho, S. Kim, D.H. LEE, Y.G. Kim, E.-S. Kang, Y.-W. Hong, D.W. Chae, Method for preparing 5-acetoxymethylfurfural using alkylammonium acetate, US9388150B2, 2016

  159. A. Gordillo, M.A. Bohn, S.A. Schunk, I. Jevtovikj, H. Werhan, S. Duefert, M. Piepenbrink, R. Backes, R. Dehn, Process for preparing a mixture comprising 5-(hydroxymethyl) furfural and specific HMF esters, US10259797B2, 2019

  160. M. Janka, D. Lange, M. Morrow, B. Bowers, K. Parker, A. Shaikh, L. Partin, J. Jenkins, P. Moody, T. Shanks, C. Sumner, Oxidation process to produce a crude and/or purified carboxylic acid product, US9428480B2, 2016

  161. Y.J. Kim, J.K. Cho, S.H. Shin, H.S. LEE, D.K. MISHRA, Catalyst for preparing 2,5-furancarboxylic acid and a method for preparing 2,5-furancarboxylic acid using the catalyst, US10661252B2, 2020

  162. A. Sanborn, Oxidation of furfural compounds, US8558018B2, 2013

  163. D.R. Henton, M.N. Masuno, R.L. Smith, A.B. Wood, D.A. Hirsch-Weil, C.T. Goralski, R.J. Araiza, Oxidation chemistry on furan aldehydes, US10392358B2, 2019

  164. Shinde SH, Rode CV (2018) An integrated production of diesel fuel precursors from carbohydrates and 2-methylfuran over Sn-Mont catalyst. ChemistrySelect. 3:4039–4046. https://doi.org/10.1002/slct.201800694

    Article  Google Scholar 

  165. Shinde SH, Rode CV (2017) A two-phase system for the clean and high yield synthesis of furylmethane derivatives over -SO3H functionalized ionic liquids. Green Chem 19:4804–4810. https://doi.org/10.1039/c7gc01654a

    Article  Google Scholar 

  166. Yang W, Sen A (2011) Direct catalytic synthesis of 5-methylfurfural from biomass-derived carbohydrates. ChemSusChem. 4:349–352. https://doi.org/10.1002/cssc.201000369

    Article  Google Scholar 

  167. Yang W, Grochowski MR, Sen A (2012) Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen. ChemSusChem. 5:1218–1222. https://doi.org/10.1002/cssc.201100669

    Article  Google Scholar 

  168. Feng Y, Li Z, Long S, Sun Y, Tang X, Zeng X, Lin L (2020) Direct conversion of biomass derived l -rhamnose to 5-methylfurfural in water in high yield. Green Chem 22:5984–5988. https://doi.org/10.1039/D0GC02105A

    Article  Google Scholar 

  169. Glatt H, Sommer Y (2006) Health risks of 5-hydroxymethylfurfural (HMF) and related compounds. In: Skoog K, Alexander J (ed) Acrylamide and other Hazardous  Compdounds in Heat-Treated Foods, Woodhead publishing, pp 328–357. https://doi.org/10.1533/9781845692018.2.328

  170. Abraham K, Gürtler R, Berg K, Heinemeyer G, Lampen A, Appel KE (2011) Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Mol Nutr Food Res 55:667–678. https://doi.org/10.1002/mnfr.201000564

    Article  Google Scholar 

  171. Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci Technol 44:793–810. https://doi.org/10.1016/j.lwt.2010.11.002

    Article  Google Scholar 

  172. Surh Y-J, Tannenbaum SR (1994) Activation of the Maillard reaction product 5-(hydroxymethyl)furfural to strong mutagens via allylic sulfonation and chlorination. Chem Res Toxicol 7:313–318. https://doi.org/10.1021/tx00039a007

    Article  Google Scholar 

  173. Martins C, Hartmann DO, Varela A, Coelho JAS, Lamosa P, Afonso CAM, Silva Pereira C (2020) Securing a furan-based biorefinery: disclosing the genetic basis of the degradation of hydroxymethylfurfural and its derivatives in the model fungus Aspergillus nidulans. Microb Biotechnol 13:1983–1996. https://doi.org/10.1111/1751-7915.13649

    Article  Google Scholar 

  174. Ventura SPM, de Morais P, Coelho JAS, Sintra T, Coutinho JAP, Afonso CAM (2016) Evaluating the toxicity of biomass derived platform chemicals. Green Chem 18:4733–4742. https://doi.org/10.1039/C6GC01211F

    Article  Google Scholar 

Download references

Acknowledgments

Harshitha N Anchan thanks the University Grants Commission (UGC), India and the Council of Scientific and Industrial Research (CSIR), India for scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Dutta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Critical review on the preparation and value addition of selected hydrophobic analogs of biomass-derived 5-(hydroxymethyl)furfural (HMF)

• Comprehensive literature survey about the relative advantages and challenges associated to the potential substitutes for HMF

• Discussions of the derivative chemistry of furfurals focusing on the reactive sites and analyzing their reactivity patterns

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anchan, H.N., Dutta, S. Recent advances in the production and value addition of selected hydrophobic analogs of biomass-derived 5-(hydroxymethyl)furfural. Biomass Conv. Bioref. 13, 2571–2593 (2023). https://doi.org/10.1007/s13399-021-01315-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01315-1

Keywords

Navigation