Skip to main content
Log in

Microwave-assisted catalytic transesterification of soybean oil using KOH/γ-Al2O3

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present study deals with potassium hydroxide (KOH) impregnated alumina catalysts and tested in biodiesel production with different configurations to optimize catalyst preparation conditions and transesterification reaction. To this aim, a series of KOH/γ-Al2O3 was synthesized with numerous amounts of KOH loading (15, 20, 25, 30, 35, 40 wt.%), at different calcination times (2, 3, 4 h) and calcination temperature (400, 500, 600 °C). Besides, the transesterification process was also performed under different heating methods, namely, conventional heating and microwave heating. The structure and textural characteristics of the catalysts were elucidated through X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), and X-ray fluorescence (XRF) analysis. The catalyst prepared with 30 wt.% KOH content, calcined at 400 °C for 3 h, was noted as the suitable catalyst, attaining 97.30% FAMEs content (conversion). The corresponding operating conditions were when the process temperature was 65 °C, catalyst loading of 3 wt.%, methanol to oil molar ratio of 12:1, and reaction duration of 35 min using microwave heating system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh D, Sharma D, Soni SL, Sharma S, Kumar Sharma P, Jhalani A (2020) A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262:116553. https://doi.org/10.1016/j.fuel.2019.116553

    Article  Google Scholar 

  2. Chozhavendhan S, Vijay Pradhap Singh M, Fransila B, Praveen Kumar R, Karthiga Devi G (2020) A review on influencing parameters of biodiesel production and purification processes. Curr Res Green Sustain Chem 1–2:1–6. https://doi.org/10.1016/j.crgsc.2020.04.002

    Article  Google Scholar 

  3. Zaidel DNA, Muhamad II, Daud NSM, Muttalib NAA, Khairuddin N, Lazim NAM (2019) Production of biodiesel from rice bran oil. Elsevier Ltd

  4. Aleman-Ramirez JL, Moreira J, Torres-Arellano S, Longoria A, Okoye PU, Sebastian PJ (2021) Preparation of a heterogeneous catalyst from moringa leaves as a sustainable precursor for biodiesel production. Fuel 284:118983. https://doi.org/10.1016/j.fuel.2020.118983

    Article  Google Scholar 

  5. Verma P, Sharma MP (2016) Review of process parameters for biodiesel production from different feedstocks. Renew Sust Energ Rev 62:1063–1071. https://doi.org/10.1016/j.rser.2016.04.054

    Article  Google Scholar 

  6. Kataria J, Mohapatra SK, Kundu K (2019) Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine. J Energy Inst 92:275–287. https://doi.org/10.1016/j.joei.2018.01.008

    Article  Google Scholar 

  7. Lin JJ, Chen YW (2017) Production of biodiesel by transesterification of Jatropha oil with microwave heating. J Taiwan Inst Chem Eng 75:43–50. https://doi.org/10.1016/j.jtice.2017.03.034

    Article  Google Scholar 

  8. Coman SM, Parvulescu VI (2013) Heterogeneous catalysis for biodiesel production. Role Catal Sustain Prod Bio Fuels Bio Chem:93–136. https://doi.org/10.1016/B978-0-444-56330-9.00004-8

  9. Apostolakou AA, Kookos IK, Marazioti C, Angelopoulos KC (2009) Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Process Technol 90:1023–1031. https://doi.org/10.1016/j.fuproc.2009.04.017

    Article  Google Scholar 

  10. Quah RV, Tan YH, Mubarak NM, Khalid M, Abdullah EC, Nolasco-Hipolito C (2019) An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts. J Environ Chem Eng 7:103219. https://doi.org/10.1016/j.jece.2019.103219

    Article  Google Scholar 

  11. Chua SY, Periasamy LA, Goh CMH, Tan YH, Mubarak NM, Kansedo J, Khalid M, Walvekar R, Abdullah EC (2020) Biodiesel synthesis using natural solid catalyst derived from biomass waste — a review. J Ind Eng Chem 81:41–60. https://doi.org/10.1016/j.jiec.2019.09.022

    Article  Google Scholar 

  12. Baskar G, Aiswarya R (2016) Trends in catalytic production of biodiesel from various feedstocks. Renew Sust Energ Rev 57:496–504. https://doi.org/10.1016/j.rser.2015.12.101

    Article  Google Scholar 

  13. Mansir N, Taufiq-Yap YH, Rashid U, Lokman IM (2017) Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energy Convers Manag 141:171–182. https://doi.org/10.1016/j.enconman.2016.07.037

    Article  Google Scholar 

  14. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sust Energ Rev 90:356–369. https://doi.org/10.1016/j.rser.2018.03.069

    Article  Google Scholar 

  15. Tang ZE, Lim S, Pang YL, Ong HC, Lee KT (2018) Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew Sust Energ Rev 92:235–253. https://doi.org/10.1016/j.rser.2018.04.056

    Article  Google Scholar 

  16. Marinković DM, Stanković MV, Veličković AV, Avramović JM, Miladinović MR, Stamenković OO, Veljković VB, Jovanović DM (2016) Calcium oxide as a promising heterogeneous catalyst for biodiesel production: current state and perspectives. Renew Sust Energ Rev 56:1387–1408. https://doi.org/10.1016/j.rser.2015.12.007

    Article  Google Scholar 

  17. Al-Jammal N, Al-Hamamre Z, Alnaief M (2016) Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil. Renew Energy 93:449–459. https://doi.org/10.1016/j.renene.2016.03.018

    Article  Google Scholar 

  18. Huang M, Luo J, Fang Z, Li H (2016) Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Appl Catal B Environ 190:103–114. https://doi.org/10.1016/j.apcatb.2016.02.069

    Article  Google Scholar 

  19. Rabie AM, Shaban M, Abukhadra MR, Hosny R, Ahmed SA, Negm NA (2019) Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J Mol Liq 279:224–231. https://doi.org/10.1016/j.molliq.2019.01.096

    Article  Google Scholar 

  20. Roschat W, Phewphong S, Khunchalee J, Moonsin P (2018) Biodiesel production by ethanolysis of palm oil using SrO as a basic heterogeneous catalyst. Mater Today Proc 5:13916–13921. https://doi.org/10.1016/j.matpr.2018.02.040

    Article  Google Scholar 

  21. Malani RS, Shinde V, Ayachit S, Goyal A, Moholkar VS (2019) Ultrasound–assisted biodiesel production using heterogeneous base catalyst and mixed non–edible oils. Ultrason Sonochem 52:232–243. https://doi.org/10.1016/j.ultsonch.2018.11.021

    Article  Google Scholar 

  22. Sharma M, Khan AA, Puri SK, Tuli DK (2012) Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass Bioenergy 41:94–106. https://doi.org/10.1016/j.biombioe.2012.02.017

    Article  Google Scholar 

  23. Faria EA, Ramalho HF, Marques JS, Suarez PAZ, Prado AGS (2008) Tetramethylguanidine covalently bonded onto silica gel surface as an efficient and reusable catalyst for transesterification of vegetable oil. Appl Catal A Gen 338:72–78. https://doi.org/10.1016/j.apcata.2007.12.021

    Article  Google Scholar 

  24. Yan B, Zhang Y, Chen G, Shan R, Ma W, Liu C (2016) The utilization of hydroxyapatite-supported CaO-CeO2 catalyst for biodiesel production. Energy Convers Manag 130:156–164. https://doi.org/10.1016/j.enconman.2016.10.052

    Article  Google Scholar 

  25. Chaveanghong S, Smith SM, Smith CB, Luengnaruemitchai A, Boonyuen S (2018) Simultaneous transesterification and esterification of acidic oil feedstocks catalyzed by heterogeneous tungsten loaded bovine bone under mild conditions. Renew Energy 126:156–162. https://doi.org/10.1016/j.renene.2018.03.036

    Article  Google Scholar 

  26. Xie W, Li H (2006) Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J Mol Catal A Chem 255:1–9. https://doi.org/10.1016/j.molcata.2006.03.061

    Article  Google Scholar 

  27. Kim HJ, Kang BS, Kim MJ, Park YM, Kim DK, Lee JS, Lee KY (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today 93–95:315–320. https://doi.org/10.1016/j.cattod.2004.06.007

    Article  Google Scholar 

  28. Xie W, Zhao L (2014) Heterogeneous CaO-MoO3-SBA-15 catalysts for biodiesel production from soybean oil. Energy Convers Manag 79:34–42. https://doi.org/10.1016/j.enconman.2013.11.041

    Article  Google Scholar 

  29. Li Y, Qiu F, Yang D, Li X, Sun P (2011) Preparation, characterization and application of heterogeneous solid base catalyst for biodiesel production from soybean oil. Biomass Bioenergy 35:2787–2795. https://doi.org/10.1016/j.biombioe.2011.03.009

    Article  Google Scholar 

  30. Xie W, Wang T (2013) Biodiesel production from soybean oil transesterification using tin oxide-supported WO3 catalysts. Fuel Process Technol 109:150–155. https://doi.org/10.1016/j.fuproc.2012.09.053

    Article  Google Scholar 

  31. Dai YM, Wu JS, Chen CC, Chen KT (2015) Evaluating the optimum operating parameters on transesterification reaction for biodiesel production over a LiAlO2 catalyst. Chem Eng J 280:370–376. https://doi.org/10.1016/j.cej.2015.06.045

    Article  Google Scholar 

  32. Xie W, Peng H, Chen L (2006) Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl Catal A Gen 300:67–74. https://doi.org/10.1016/j.apcata.2005.10.048

    Article  Google Scholar 

  33. Shahraki H, Entezari MH, Goharshadi EK (2015) Sono-synthesis of biodiesel from soybean oil by KF/γ-Al2O3 as a nano-solid-base catalyst. Ultrason Sonochem 23:266–274. https://doi.org/10.1016/j.ultsonch.2014.09.010

    Article  Google Scholar 

  34. Azcan N, Danisman A (2007) Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 86:2639–2644. https://doi.org/10.1016/j.fuel.2007.05.021

    Article  Google Scholar 

  35. Azcan N, Danisman A (2008) Microwave assisted transesterification of rapeseed oil. Fuel 87:1781–1788. https://doi.org/10.1016/j.fuel.2007.12.004

    Article  Google Scholar 

  36. Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S (2009) A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew Energy 34:1145–1150. https://doi.org/10.1016/j.renene.2008.06.015

    Article  Google Scholar 

  37. Ma G, Hu W, Pei H, Jiang L, Ji Y, Mu R (2015) Study of KOH/Al2O3 as heterogeneous catalyst for biodiesel production via in situ transesterification from microalgae. Environ Technol (United Kingdom) 36:622–627. https://doi.org/10.1080/09593330.2014.954629

  38. Zhang X, Ma Q, Cheng B, Wang J, Li J, Nie F (2012) Research on KOH/La-Ba-Al2O3 catalysts for biodiesel production via transesterification from microalgae oil. J Nat Gas Chem 21:774–779. https://doi.org/10.1016/S1003-9953(11)60431-3

    Article  Google Scholar 

  39. Xie W, Zhao L (2013) Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts. Energy Convers Manag 76:55–62. https://doi.org/10.1016/j.enconman.2013.07.027

    Article  Google Scholar 

  40. Nasreen S, Liu H, Skala D, Waseem A, Wan L (2015) Preparation of biodiesel from soybean oil using La/Mn oxide catalyst. Fuel Process Technol 131:290–296. https://doi.org/10.1016/j.fuproc.2014.11.029

    Article  Google Scholar 

  41. Chakraborty R, Bepari S, Banerjee A (2010) Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts. Chem Eng J 165:798–805. https://doi.org/10.1016/j.cej.2010.10.019

    Article  Google Scholar 

  42. Laskar IB, Rajkumari K, Gupta R, Chatterjee S, Paul B, Rokhum L (2018) Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv 8:20131–20142. https://doi.org/10.1039/c8ra02397b

    Article  Google Scholar 

  43. Boz N, Kara M (2009) Solid base catalyzed transesterification of canola oil. Chem Eng Commun 196:80–92. https://doi.org/10.1080/00986440802301438

    Article  Google Scholar 

  44. Han H, Guan Y (2009) Synthesis of biodiesel from rapeseed oil using K2O/γ- Al2O3 as nano-solid-base catalyst. Wuhan Univ J Nat Sci 14:75–79. https://doi.org/10.1007/s11859-009-0116-x

    Article  Google Scholar 

  45. de la Hoz A, Díaz-Ortiz À, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178. https://doi.org/10.1039/b411438h

    Article  Google Scholar 

  46. Li X, Yu D, Zhang W, Li Z, Zhang X, Huang H (2013) Effective synthesis of cis-3-hexen-1-yl acetate via transesterification over KOH/γ-Al2O3: structure and catalytic performance. Appl Catal A Gen 455:1–7. https://doi.org/10.1016/j.apcata.2013.01.015

    Article  Google Scholar 

  47. Ghalandari A, Taghizadeh M, Rahmani M (2019) Statistical optimization of the biodiesel production process using a magnetic core-mesoporous shell KOH/Fe3O4@γ-Al2O3 nanocatalyst. Chem Eng Technol 42:89–99. https://doi.org/10.1002/ceat.201700658

    Article  Google Scholar 

  48. Boz N, Degirmenbasi N, Kalyon DM (2009) Conversion of biomass to fuel: transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Appl Catal B Environ 89:590–596. https://doi.org/10.1016/j.apcatb.2009.01.026

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Anadolu University Scientific Research Consul under the project number of 1101F008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nezihe Ayas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varol, P.M., Çakan, A., Kiren, B. et al. Microwave-assisted catalytic transesterification of soybean oil using KOH/γ-Al2O3. Biomass Conv. Bioref. 13, 633–645 (2023). https://doi.org/10.1007/s13399-020-01253-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01253-4

Keywords

Navigation