Skip to main content

Advertisement

Log in

Integrated production of second-generation ethanol and biogas from sugarcane bagasse pretreated with ozone

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Considering the lignocellulosic biorefinery, the present work evaluated the energy potential related to biogas production from the anaerobic digestion (both at one- and two-stage) of the main residues derived from sugarcane bagasse (SB) pretreatment with ozone aiming its further use for 2G ethanol. The results showed that 2G ethanol production was maximized under mild ozonation conditions (7.5 mgO3 gSB−1), generating 30 L ethanol tonSB−1, which corresponds to a revenue of 17 USD tonSB−1 with sale. Despite not leading to profits, the use of electric energy generated through CHP system (by burning the biogas produced at two-stage anaerobic digestion) covered the energy costs involved in SB ozonation. A combined pretreatment consisting of SB ozonation followed by alkaline extraction (AE) provided the highest 2G ethanol production (66 L tonSB−1) under the most severe conditions (97.5 mgO3 gSB−1), and resulted in 37 USD tonSB−1 with ethanol sale. Despite this, process sustainability was only achieved when the anaerobic digestion of main residues was taken into account and the combined O3+AE was used under the mildest SB ozonation. At these conditions, the surplus energy (~ 30 MW per harvest) had the potential to supply about 320,000 inhabitants during the crop harvest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article, including the supplementary information files.

Abbreviations

AD:

Anaerobic digestion

AE:

Alkaline extraction

CP:

Central point

EC:

Enzymatic conversion

LB:

Lignocellulosic biomass

LF:

Liquid fractions, from enzymatic hydrolysis of SF

LR:

Lignin removal

LSR:

Liquid-to-solid ratio

RLF:

Residual liquid fraction from alkaline extraction of SB pretreated with O3

SB:

Sugarcane bagasse

SF:

Solid fractions, from SB pretreatment

SS-1S-AD:

Single-stage anaerobic digestion at solid state

SS-2S-AD:

Two-stage anaerobic digestion at solid state

USF:

Unhydrolyzed solid fractions, from enzymatic hydrolysis of SF

YEtOH:

Ethanol yield

1S-AD:

Single-stage anaerobic digestion

2S-AD:

Two-stage anaerobic digestion.

References

  1. Bittencourt GA, Barreto ES, Brandão RL, Baêta BEL, Gurgel LVA (2019) Fractionation of sugarcane bagasse using hydrothermal and advanced oxidative pretreatments for bioethanol and biogas production in lignocellulose biorefineries. Bioresour Technol 292:121963. https://doi.org/10.1016/j.biortech.2019.121963

    Article  Google Scholar 

  2. UNICA. A bioeletricidade da cana em números – Janeiro de 2017. http://www.unica.com.br/download.php?idSecao=17&id=38583365, 2017 (accessed in 16 November 2017)

  3. Osaki MR, Seleghim P (2017) Bioethanol and power from integrated second generation biomass: a Monte Carlo simulation. Energy Convers Manag 141:274–284. https://doi.org/10.1016/j.enconman.2016.08.076

    Article  Google Scholar 

  4. Adarme OFH, Baêta BEL, Filho JBG, Gurgel LVA, Aquino SF (2019) Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes. Bioresour Technol 287:121443. https://doi.org/10.1016/j.biortech.2019.121443

    Article  Google Scholar 

  5. Perrone OM, Rossi JS, de Souza Moretti MM, Nunes CDCC, Bordignon SE, Gomes E, Boscolo M (2017) Influence of ozonolysis time during sugarcane pretreatment: effects on the fiber and enzymatic saccharification. Bioresour Technol 224:733–737. https://doi.org/10.1016/j.biortech.2016.11.043

    Article  Google Scholar 

  6. Santos LC, Aquino SF, Gurgel LVA, Adarme OFH, Baêta BEL (2018) Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresour Technol 263:601–612. https://doi.org/10.1016/j.biortech.2018.05.037

    Article  Google Scholar 

  7. Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12. https://doi.org/10.1016/j.biortech.2015.08.143

    Article  Google Scholar 

  8. Zhang T, Zhu MJ (2016) Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction. Bioresour Technol 214:769–777. https://doi.org/10.1016/j.biortech.2016.05.032

    Article  Google Scholar 

  9. Zhang T, Zhu MJ (2017) Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse. Bioresour Technol 229:204–210. https://doi.org/10.1016/j.biortech.2017.01.028

    Article  Google Scholar 

  10. Zhu Z, Zhu M, Wu Z (2012) Pretreatment of sugarcane bagasse with NH4OH–H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Bioresour Technol 119:199–207. https://doi.org/10.1016/j.biortech.2012.05.111

    Article  Google Scholar 

  11. Liu ZH, Chen HZ (2016) Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover. Bioresour Technol 205:142–152. https://doi.org/10.1016/j.biortech.2016.01.037

    Article  Google Scholar 

  12. Baêta BEL, Lima DRS, Ardame OFH, Gurgel LVA, Aquino SF (2016) Optimization of sugarcane bagasse autohydrolysis for methane production from hemicellulose hydrolyzates in a biorefinery concept. Bioresour Technol 200:137–146. https://doi.org/10.1016/j.biortech.2015.10.003

    Article  Google Scholar 

  13. Fuess LT, Kiyuna LSM, Júnior ADNF, Persinoti GF, Squina FM, Garcia ML, Zaiat M (2017) Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy 189:480–491. https://doi.org/10.1016/j.apenergy.2016.12.071

    Article  Google Scholar 

  14. Monlau F, Kaparaju P, Trably E, Steyer JP, Carrere H (2015) Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: mass, energy and economical balances. Chem Eng J 260:377–385. https://doi.org/10.1016/j.cej.2014.08.108

    Article  Google Scholar 

  15. APHA AWWA WWE - American Public Health Association/American Water Works Association/Water Environment Federation. (2005) Standard methods for the examination of water and wastewater, 21 ed., Washington DC, USA. ISBN: 978-0875530475

  16. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M. (2016) Response surface methodology process and product optimization using designed experiments, fourth. John Wiley & Sons, USA. ISBN: ISBN: 978-1-118-91601-8

  17. Iordache A, Culea M, Gherman C, Cozar O (2009) Characterization of some plant extracts by GC-MS. Nucl Instrum Methods Phys Res, B 267:33–342. https://doi.org/10.1016/j.nimb.2008.10.021

    Article  Google Scholar 

  18. Bu J, Yan X, Wang YT, Zhu SM, Zhu MJ (2019) Co-production of high-gravity bioethanol and succinic acid from potassium peroxymonosulfate and deacetylation sequentially pretreated sugarcane bagasse by simultaneous saccharification and co-fermentation. Energy Convers Manag 186:131–139. https://doi.org/10.1016/j.enconman.2019.02.038

    Article  Google Scholar 

  19. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    Article  Google Scholar 

  20. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  21. Visser EM, Leal TF, de Almeida MN, Guimarães VM (2015) Increased enzymatic hydrolysis of sugarcane bagasse from enzyme recycling. Biotechnol Biofuels. 8:5. https://doi.org/10.1186/s13068-014-0185-8

    Article  Google Scholar 

  22. Yang L, Xu F, Ge X, Li Y (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sust Energ Rev 44:824–834. https://doi.org/10.1016/j.rser.2015.01.002

    Article  Google Scholar 

  23. Lima DRS, Adarme OFH, Baêta BEL, Gurgel LVA, Aquino SF (2018) Influence of different thermal pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: a kinetic analysis. Ind Crop Prod 111:684–693. https://doi.org/10.1016/j.indcrop.2017.11.048

    Article  Google Scholar 

  24. Baeta BEL, Luna HJ, Sanson AL, Silva SQ, Aquino SF (2013) Degradation of a model azo dye in submerged anaerobic membrane bioreactor (SAMBR) operated with powdered activated carbon (PAC). J Environ Manag 128:462–470. https://doi.org/10.1016/j.jenvman.2013.05.038

    Article  Google Scholar 

  25. Dos Santos ALP, Moreira GR, Gomes-Silva F et al (2019) Generation of models from existing models composition: an application to agrarian sciences. PLoS One 14:1–12. https://doi.org/10.1371/journal.pone.0214778

    Article  Google Scholar 

  26. Schofield P, Pitt RE, Pell AN (1994) Kinetics of fiber digestion from in vitro gas production. J Anim Sci 72:2980–2991. https://doi.org/10.2527/1994.72112980x

    Article  Google Scholar 

  27. Zwietering MH, Jongenburguer I, Rombouts FM, Riet KV (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881. https://doi.org/10.1128/AEM.56.6.1875-1881.1990

    Article  Google Scholar 

  28. Cano R, Pérez-Elvira SL, Fdz-Polanco F (2015) Energy feasibility study of sludge pretreatments: a review. Appl Energy 149:179–185. https://doi.org/10.1016/j.apenergy.2015.03.132

    Article  Google Scholar 

  29. Santos, F., Eichler, P., de Queiroz, J.H., Gomes, F. (2020) Production of second-generation ethanol from sugarcane. In: Sugarcane Biorefinery, Technology and Perspectives. Academic Press. pp. 195–228

  30. EPE - Empresa de Pesquisa Energética. Leilão A-5 2016. http://www.epe.gov.br/leiloes/Documents/Leil/C3/A3o/20de/20Energia/20A-5%202016/Resultado_completo_site_23_len.pdf, 2016 [accessed in 14 November 2017]

  31. BM&FBovespa – Empresa do setor financeiro de capitais. http://www.bmf.com.br/pages/portal/bmfbovespa/boletim1/SistemaPregao1.asp?pagetype=pop&caminho=Resumo/20Estat/EDstico/20-%20Sistema%20Preg%E3o&Data=&Mercadoria=ETH, 2017 [accessed in 14 November 2017]

  32. Kaur, U., Oberoi, H.S., Bhargav, V.K., Sharma-Shivappa, R., Dhaliwal, S.S. (2012) Ethanol production from alkali- and ozone-treated cotton stalks using thermotolerant Pichia kudriavzevii HOP-1. 37: 219–226. doi:https://doi.org/10.1016/j.indcrop.2011.12.007

  33. Souza-Correa JA, Ridenti MA, Oliveira C, Araújo SR, Amorim J (2013) Decomposition of lignin from sugar cane bagasse during ozonation process monitored by optical and mass spectrometries. J Phys Chem A 117:3110–3199. https://doi.org/10.1021/jp3121879

    Article  Google Scholar 

  34. Qin L, Li WC, Liu L, Zhu JQ, Li X, Li BZ (2016) Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnol Biofuels 9:70. https://doi.org/10.1186/s13068-016-0485-2

    Article  Google Scholar 

  35. Rosen Y, Mamane H, Gerchman Y (2019) Short ozonation of lignocellulosic waste as energetically favorable pretreatment. Bioenergy Res 12:292–301. https://doi.org/10.1007/s12155-019-9962-3

    Article  Google Scholar 

  36. Yazdani, S.S.; Mattam, A.J. & Gonzalez, R. (2010) Fuel and chemical production from glycerol, a biodiesel waste product. In. Blaschek, H. P.; Ezeji, T. C. e Scheffran, J. Biofuels from Agricultural Wastes and Byproducts. Blackwell Publishing. ISBN: 978-0-813-80252-7

  37. Travaini R, Otero MDM, Coca M, Da-Silva R, Bolado S (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339. https://doi.org/10.1016/j.biortech.2013.01.133

    Article  Google Scholar 

  38. Adarme OFH, Baêta BEL, Lima DRS, Gurgel LVA, de Aquino SF (2017) Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation. Ind Crop Prod 109:288–299. https://doi.org/10.1016/j.indcrop.2017.08.040

    Article  Google Scholar 

  39. An Q, Cheng JR, Wang YT, Zhu MJ (2020) Performance and energy recovery of single and two stage biogas production from paper sludge: Clostridium thermocellum augmentation and microbial community analysis. Renew Energ 148:214–222

    Article  Google Scholar 

  40. An Q, Bu J, Cheng JR, Hu BB, Wang YT, Zhu MJ (2020) Biological saccharification by Clostridium thermocellum and two-stage hydrogen and methane production from hydrogen peroxide-acetic acid pretreated sugarcane bagasse. Int J Hydrog Energy 45(55):30211–30221

    Article  Google Scholar 

  41. Lettinga, G.; Van Haandel, A. C. (1994) Anaerobic sewage treatment: a practical guide for regions with a hot climate. Wiley & Sons. ISBN: 978-0471951216

  42. Bule MV, Gao AH, Hiscox B, Chen S (2013) Structural modification of lignin and characterization of pretreated wheat straw by ozonation. J Agric Food Chem 61:3916–3925. https://doi.org/10.1021/jf4001988

    Article  Google Scholar 

  43. Vu HP, Nguyen LN, Vu MT, Johir MAH, McLaughlan R, Nghiem LD (2020) A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci Total Environ 743:140630. https://doi.org/10.1016/j.scitotenv.2020.140630

    Article  Google Scholar 

  44. Osuna-Laveaga DR, García-Depraect O, Vallejo-Rodríguez R, López-López A, León-Becerril E (2020) Integrated ozonation-enzymatic hydrolysis pretreatment of sugarcane bagasse: enhancement of sugars released to expended ozone ratio. Processes 8:1–18. https://doi.org/10.3390/pr8101274

    Article  Google Scholar 

Download references

Funding

This work was supported by the Coordination for the Improvement of Higher Education Personnel - CAPES (Finance Code 001); Brazilian National Council for Scientific and Technological Development (CNPq – grant numbers: 308978/2017-0; 152180/2019-2; 307445/2019-4); and Minas Gerais State Research Funding Agency (FAPEMIG – grant number: TEC-APQ-03502-16).

Author information

Authors and Affiliations

Authors

Contributions

Diego R S Lima: investigation, methodology, resources, formal analysis; Aline G O Paranhos: writing – original draft; Oscar F H Adarme: formal analysis; Software; Bruno E L Baêta: resources, supervision, writing – review and editing; Leandro V A Gurgel: resources, supervision, writing – review and editing, funding acquisition; Alexandre S Santos: writing – review and editing, visualization; Silvana Q Silva: writing - review and editing, resources, funding acquisition; Sérgio F Aquino: conceptualization, writing - review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to Sérgio Francisco de Aquino.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, D.R.S., de Oliveira Paranhos, A.G., Adarme, O.F.H. et al. Integrated production of second-generation ethanol and biogas from sugarcane bagasse pretreated with ozone. Biomass Conv. Bioref. 12, 809–825 (2022). https://doi.org/10.1007/s13399-020-01234-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01234-7

Keywords

Navigation