Skip to main content

Advertisement

Log in

Torrefaction of oil palm empty fruit bunch pellets: product yield, distribution and fuel characterisation for enhanced energy recovery

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, the non-oxidative torrefaction of oil palm empty fruit bunch (OPEFB) pellets was investigated from 250 to 300 °C for 30 min in a horizontal fixed bed tubular reactor. The effects of the selected conditions on the yields, distributions and fuel characteristics of the torrefaction products were examined. The mass or solid yield (MY) decreased from 68.1 to 36.2%, whereas the liquid yield (LY) and gas yield (GY) increased from 19.4–40.1% and 12.5–23.7%, respectively, due to drying, devolatilization and depolymerisation during torrefaction. Physicochemical and calorific analyses showed that the torrefied OPEFB pellets have high carbon but low oxygen contents, which accounts for the high heating values (HHV = 22.83–25.81 MJ/kg). The torrefied OPEFB pellets also exhibit lower moisture (2–4%) and volatile matter (34.38–65.31 wt.%) but high ash (4–20 wt.%) and fixed carbon (28.69–41.62 wt.%) compared to the raw pellets. The OPEFB pellet fuel properties, namely pH that ranged from 6.65 to 7.74, hydrophobicity from 100 to 23.04% and grindability from 53.66 to 108, were markedly enhanced after torrefaction at 300 °C. The LY consisted of organics (67.64–62.62%) and water (32.36–37.38%) fractions characterised by high acidity (pH = 2.89–3.22) and dark hues formed by holocellulose and lignin thermal degradation at higher torrefaction temperatures. Based on the findings, the torrefied OPEFB pellets is a highly grindable, hydrophobic, thermally stable and promising solid biofuel for firing, co-firing or substituting coal in power plants provided the existing challenges that affect global biomass supply chains are addressed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yan W (2017) A makeover for the world's most hated crop. Nature, vol 543. Springer Nature Inc., USA

  2. Foong SZY, Goh CKM, Supramaniam CV, Ng DKS (2019) Input–output optimisation model for sustainable oil palm plantation development. Sustain Prod Consum 17:31–46

    Article  Google Scholar 

  3. Johari A, Nyakuma BB, Nor SHM, Mat R, Hashim H, Ahmad A, Zakaria ZY, Abdullah TAT (2015) The challenges and prospects of palm oil based biodiesel in Malaysia. Energy 81:255–261

    Article  Google Scholar 

  4. Taufiq-Yap Y, Farabi MA, Syazwani O, Ibrahim ML, Marliza T (2020) Sustainable Production of Bioenergy. In: Ashwani KG, Ashoke D, Suresh KA, Abhijit K, Akshai R (Eds) Innovations in Sustainable Energy and Cleaner Environment. Green Energy and Technology. pp 541–561 Springer, Singapore. https://doi.org/10.1007/978-981-13-9012-8_24

  5. Cazzolla Gatti R, Liang J, Velichevskaya A, Zhou M (2019) Sustainable palm oil may not be so sustainable. Sci Total Environ 652:48–51

    Article  Google Scholar 

  6. MPOB (2019) Overview of the Malaysian Oil Palm Industry 2018. Palm Oil Statistics. Malaysian Palm Oil Board, Kuala Lumpur, Malaysia

  7. AIM (2013) National Biomass Strategy 2020. New wealth creation for Malaysia’s palm oil industry, vol 2.0, 2nd edn. Agensi Inovasi Malaysia (AIM), Kuala Lumpur

    Google Scholar 

  8. Ganapathy B, Yahya A, Ibrahim N (2019) Bioremediation of palm oil mill effluent (POME) using indigenous Meyerozyma guilliermondii. Environ Sci Pollut Res 26(11):11113–11125

    Article  Google Scholar 

  9. Loh SK (2017) The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers Manag 141:285–298

    Article  Google Scholar 

  10. Mahlia TMI, Ismail N, Hossain N, Silitonga AS, Shamsuddin AH (2019) Palm oil and its wastes as bioenergy sources: a comprehensive review. Environ Sci Pollut Res 26 14849–14866 (2019). https://doi.org/10.1007/s11356-019-04563-x

  11. Chin K, H’ng P, Maminski M, Go W, Lee C, Raja-Nazrin R, Khoo P, Ashikin S, Halimatun I (2018) Additional additives to reduce ash related operation problems of solid biofuel from oil palm biomass upon combustion. Ind Crop Prod 123:285–295

    Article  Google Scholar 

  12. Ashikin NSSN, Djalaluddin A, Yusuff S, Khalil HA, Syakir MI (2019) Empty Fruit Bunch-Seaweed Biocomposite as Potential Soil Erosion Mitigation Material for Oil Palm Plantation. BioResources 14(3):5438–5450

    Google Scholar 

  13. Demirbas A (2011) Waste management, waste resource facilities and waste conversion processes. Energy Convers Manag 52(2):1280–1287

    Article  Google Scholar 

  14. Chiew YL, Shimada S (2013) Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fibre and fertilizer—a case study of Malaysia. Biomass Bioenergy 51:109–124

    Article  Google Scholar 

  15. Krishnan Y, Bong CPC, Azman NF, Zakaria Z, Abdullah N, Ho CS, Lee CT, Hansen SB, Hara H (2017) Co-composting of palm empty fruit bunch and palm oil mill effluent: microbial diversity and potential mitigation of greenhouse gas emission. J Clean Prod 146:94–100

    Article  Google Scholar 

  16. Taheripour F, Hertel TW, Ramankutty N (2019) Market-mediated responses confound policies to limit deforestation from oil palm expansion in Malaysia and Indonesia. Proc Natl Acad Sci 116(38):19193–19199

    Article  Google Scholar 

  17. Uemura Y, Sellappah V, Trinh TH, Hassan S, Tanoue K-i (2017) Torrefaction of empty fruit bunches under biomass combustion gas atmosphere. Bioresour Technol 243:107–117

    Article  Google Scholar 

  18. Mohammed MAA, Salmiaton A, Wan Azlina WAKG, Mohamad Amran MS (2012) Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresour Technol 110(0):628–636

    Article  Google Scholar 

  19. Asadieraghi M, Daud WMAW (2015) In-depth investigation on thermochemical characteristics of palm oil biomasses as potential biofuel sources. J Anal Appl Pyrolysis 115:379–391

    Article  Google Scholar 

  20. Nyakuma BB, Ahmad A, Johari A, Tuan TA, Oladokun O, Aminu DY (2015) Non-isothermal kinetic analysis of oil palm empty fruit bunch pellets by thermogravimetric analysis. Chem Eng Trans 45:1327–1332

    Google Scholar 

  21. Olugbade T, Ojo O, Mohammed T (2019) Influence of binders on combustion properties of biomass briquettes: a recent review. BioEnergy Res 12(2):241–259

    Article  Google Scholar 

  22. Sukiran MA, Daud WMAW, Abnisa F, Nasrin AB, Astimar AA, Loh SK (2020) Individual torrefaction parameter enhances characteristics of torrefied empty fruit bunches. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00804-z

  23. Pathomrotsakun J, Nakason K, Kraithong W, Khemthong P, Panyapinyopol B, Pavasant P (2020) Fuel properties of biochar from torrefaction of ground coffee residue: effect of process temperature, time, and sweeping gas. Biomass Conv. Bioref 10:743–753 (2020). https://doi.org/10.1007/s13399-020-00632-1

  24. Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Academic Press (Elsevier), Burlington

    Google Scholar 

  25. Prins MJ, Ptasinski KJ, Janssen FJ (2006) Torrefaction of wood: Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34

    Article  Google Scholar 

  26. Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis J (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2):169–175

    Article  Google Scholar 

  27. Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy 28(3):427–434

    Article  Google Scholar 

  28. Li Y, Tittmann P, Parker N, Jenkins B (2017) Economic impact of combined torrefaction and pelletization processes on forestry biomass supply. GCB Bioenergy 9(4):681–693

    Article  Google Scholar 

  29. Basu P, Rao S, Dhungana A (2013) An investigation into the effect of biomass particle size on its torrefaction. Can J Chem Eng 91(3):466–474

    Article  Google Scholar 

  30. Chen WH (2015) Torrefaction. In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of Biomass: Processes and Technologies, vol 1. Elsevier BV, Oxford, p 261

    Google Scholar 

  31. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102(2):1246–1253

    Article  Google Scholar 

  32. Nunes L, Matias J, Catalão J (2014) A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew Sust Energ Rev 40:153–160

    Article  Google Scholar 

  33. Xue J, Chellappa T, Ceylan S, Goldfarb JL (2018) Enhancing biomass+ coal Co-firing scenarios via biomass torrefaction and carbonization: case study of avocado pit biomass and Illinois No. 6 coal. Renew Energy 122:152–162

    Article  Google Scholar 

  34. Lam SS, Tsang YF, Yek PNY, Liew RK, Osman MS, Peng W, Lee WH, Park Y-K (2019) Co-processing of oil palm waste and waste oil via microwave co-torrefaction: a waste reduction approach for producing solid fuel product with improved properties. Process Saf Environ Prot 128:30–35

    Article  Google Scholar 

  35. Bergman PC (2005) Combined torrefaction and pelletisation: the TOP process

  36. Verhoeff F, Pels J, Boersma A, Zwart R, Kiel J (2011) ECN torrefaction technology heading for demonstration. ECN, Petten

    Google Scholar 

  37. Rudolfsson M, Stelte W, Lestander TA (2015) Process optimization of combined biomass torrefaction and pelletization for fuel pellet production—a parametric study. Appl Energy 140:378–384

    Article  Google Scholar 

  38. Manouchehrinejad M, Mani S (2018) Torrefaction after pelletization (TAP): analysis of torrefied pellet quality and co-products. Biomass Bioenergy 118:93–104

    Article  Google Scholar 

  39. Gilbert P, Ryu C, Sharifi V, Swithenbank J (2009) Effect of process parameters on pelletisation of herbaceous crops. Fuel 88(8):1491–1497

    Article  Google Scholar 

  40. Sukiran MA, Abnisa F, Daud WMAW, Bakar NA, Loh SK (2017) A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers Manag 149:101–120

    Article  Google Scholar 

  41. Nyakuma BB, Wong SL, Faizal HM, Hambali HU, Oladokun O, Abdullah TAT (2020) Carbon dioxide torrefaction of oil palm empty fruit bunches pellets: characterisation and optimisation by response surface methodology. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-13020-01071-13398

  42. Uemura Y, Omar WN, Tsutsui T, Yusup SB (2011) Torrefaction of oil palm wastes. Fuel 90(8):2585–2591

    Article  Google Scholar 

  43. Asadullah M, Adi AM, Suhada N, Malek NH, Saringat MI, Azdarpour A (2014) Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Convers Manag 88:1086–1093

    Article  Google Scholar 

  44. Li M-F, Li X, Bian J, Xu J-K, Yang S, Sun R-C (2015) Influence of temperature on bamboo torrefaction under carbon dioxide atmosphere. Ind Crop Prod 76:149–157

    Article  Google Scholar 

  45. Wannapeera J, Worasuwannarak N (2015) Examinations of chemical properties and pyrolysis behaviours of torrefied woody biomass prepared at the same torrefaction mass yields. J Anal Appl Pyrolysis 115:279–287

    Article  Google Scholar 

  46. Ohliger A, Förster M, Kneer R (2013) Torrefaction of beechwood: a parametric study including heat of reaction and grindability. Fuel 104:607–613

    Article  Google Scholar 

  47. Bridgeman T, Jones J, Shield I, Williams P (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6):844–856

    Article  Google Scholar 

  48. Na B-I, Kim Y-H, Lim W-S, Lee S-M, Lee H-W, Lee J-W (2013) Torrefaction of oil palm mesocarp fibre and their effect on pelletizing. Biomass Bioenergy 52:159–165

    Article  Google Scholar 

  49. Yue Y, Singh H, Singh B, Mani S (2017) Torrefaction of sorghum biomass to improve fuel properties. Bioresour Technol 232:372–379

    Article  Google Scholar 

  50. Zheng A, Zhao Z, Chang S, Huang Z, He F, Li H (2012) Effect of torrefaction temperature on product distribution from two-staged pyrolysis of biomass. Energy Fuel 26(5):2968–2974

    Article  Google Scholar 

  51. Chen W-H, Liu S-H, Juang T-T, Tsai C-M, Zhuang Y-Q (2015) Characterization of solid and liquid products from bamboo torrefaction. Appl Energy 160:829–835

    Article  Google Scholar 

  52. Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48(3):271–284

    Article  Google Scholar 

  53. Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuel 24(9):4638–4645

    Article  Google Scholar 

  54. Ibrahim RH, Darvell LI, Jones JM, Williams A (2013) Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrolysis 103:21–30

    Article  Google Scholar 

  55. Shang L, Ahrenfeldt J, Holm JK, Sanadi AR, Barsberg S, Thomsen T, Stelte W, Henriksen UB (2012) Changes of chemical and mechanical behaviour of torrefied wheat straw. Biomass Bioenergy 40:63–70

    Article  Google Scholar 

  56. Nyakuma BB, Wong S, Oladokun O (2019) Non-oxidative thermal decomposition of oil palm empty fruit bunch pellets: fuel characterisation, thermogravimetric, kinetic, and thermodynamic analyses. Biomass Conv. Bioref (2019). https://doi.org/10.1007/s13399-019-00568-1

  57. Chen W-H, Zhuang Y-Q, Liu S-H, Juang T-T, Tsai C-M (2016) Product characteristics from the torrefaction of oil palm fibre pellets in inert and oxidative atmospheres. Bioresour Technol 199:367–374

    Article  Google Scholar 

  58. Talero G, Rincón S, Gómez A (2019) Biomass torrefaction in a standard retort: a study on oil palm solid residues. Fuel 244:366–378

    Article  Google Scholar 

  59. Faizal HM, Shamsuddin HS, Harif MHM, Hanaffi MFMA, Rahman MRA, Rahman MM, Latiff Z (2018) Torrefaction of densified mesocarp fibre and palm kernel shell. Renew Energy 122:419-428. https://doi.org/10.1016/j.renene.2018.01.118

  60. Lee J-W, Kim Y-H, Lee S-M, Lee H-W (2012) Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresour Technol 116:471–476

    Article  Google Scholar 

  61. Dowling NI, Hyne JB, Brown DM (1990) Kinetics of the reaction between hydrogen and sulfur under high-temperature Claus furnace conditions. Ind Eng Chem Res 29(12):2327–2332

    Article  Google Scholar 

  62. Pinto F, Gominho J, André RN, Gonçalves D, Miranda M, Varela F, Neves D, Santos J, Lourenço A, Pereira H (2017) Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel 206:289–299

    Article  Google Scholar 

  63. Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111(1-2):81–84

    Article  Google Scholar 

  64. Dias BO, Silva CA, Higashikawa FS, Roig A, Sánchez-Monedero MA (2010) Use of biochar as a bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresour Technol 101(4):1239–1246

    Article  Google Scholar 

  65. Thanapal SS, Chen W, Annamalai K, Carlin N, Ansley RJ, Ranjan D (2014) Carbon dioxide torrefaction of woody biomass. Energy Fuel 28(2):1147–1157

    Article  Google Scholar 

  66. Poudel J, Ohm T-I, Gu JH, Shin MC, Oh SC (2017) Comparative study of torrefaction of empty fruit bunches and palm kernel shell. J Mater Cycles Waste Manag 19(2):917–927

    Article  Google Scholar 

  67. Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1(1):1–9

    Article  Google Scholar 

  68. Chen W-H, Lu K-M, Lee W-J, Liu S-H, Lin T-C (2014) Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl Energy 114(1):104–113

    Article  Google Scholar 

  69. Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653

    Article  Google Scholar 

  70. Martinsen V, Alling V, Nurida N, Mulder J, Hale S, Ritz C, Rutherford D, Heikens A, Breedveld GD, Cornelissen G (2015) pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Sci Plant Nutr 61(5):821–834

    Article  Google Scholar 

  71. Ciolkosz D, Wallace R (2011) A review of torrefaction for bioenergy feedstock production. Biofuels Bioprod Biorefin 5(3):317–329

    Article  Google Scholar 

  72. Pach M, Zanzi R, Björnbom E (2002) Torrefied biomass a substitute for wood and charcoal. In: 6th Asia-Pacific International symposium on combustion and energy utilization

  73. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933

    Article  Google Scholar 

  74. Vassilev SV, Vassileva CG, Vassilev VS (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158:330–350

    Article  Google Scholar 

  75. Iroba KL, Baik O-D, Tabil LG (2017) Torrefaction of biomass from municipal solid waste fractions I: Temperature profiles, moisture content, energy consumption, mass yield, and thermochemical properties. Biomass Bioenergy 105:320–330

    Article  Google Scholar 

  76. Fermoso J, Arias B, Plaza MG, Pevida C, Rubiera F, Pis J, García-Peña F, Casero P (2009) High-pressure co-gasification of coal with biomass and petroleum coke. Fuel Process Technol 90(7-8):926–932

    Article  Google Scholar 

  77. Zhan X, Jia J, Zhou Z, Wang F (2011) Influence of blending methods on the co-gasification reactivity of petroleum coke and lignite. Energy Convers Manag 52(4):1810–1814

    Article  Google Scholar 

  78. Nyakuma B, Oladokun O, Bello A (2018) Combustion kinetics of petroleum coke by isoconversional modelling. Chem Chem Technol 12(4):505–510

    Article  Google Scholar 

  79. Peng J, Bi H, Sokhansanj S, Lim J (2012) A study of particle size effect on biomass torrefaction and densification. Energy Fuel 26(6):3826–3839

    Article  Google Scholar 

  80. Chen D, Mei J, Li H, Li Y, Lu M, Ma T, Ma Z (2017) Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour Technol 228:62–68

    Article  Google Scholar 

  81. Oasmaa A, Elliott DC, Korhonen J (2010) Acidity of biomass fast pyrolysis bio-oils. Energy Fuel 24(12):6548–6554

    Article  Google Scholar 

  82. Yang C-y, Yang X-m, Lu X-s, J-z Y, Lin W-g (2005) Pyrolysis of straw obtained from the stagewise treatment. Chin J Process Eng 5(4):383

    Google Scholar 

  83. Wang G, Luo Y, Deng J, Kuang J, Zhang Y (2011) Pretreatment of biomass by torrefaction. Chin Sci Bull 56(14):1442–1448

    Article  Google Scholar 

  84. Voegele E (2020) EU wood pellet demand expected to increase in 2020. BBI International. https://bit.ly/2EGkr2W. Accessed 03 August 2020

  85. USDA-FAS (2020) Biofuels Report. Annual Report on Biofuels. United States Department of Agriculture (USDA), Foreign Agriculture Service (FAS), Den Haag, The Netherlands

  86. Szendrei K (2015) Sustainability criteria for biomass The importance of transparency, sustainability co-benefits, and trade-offs. POLIMP - JIN Climate & Sustainability, Brussels, Belgium. Available at: https://bit.ly/2VYuhmt. Accessed 20th Jul 2020

  87. Wild M, Deutmeyer M (2016) Possible effects of torrefaction on biomass trade. European Commission (EC). https://bit.ly/2DkwP8t. Accessed 04 August 2020

  88. Pellet Atlas (2009) Development and promotion of a transparent European Pellets Market Creation of a European real-time Pellets Atlas. European Commission. https://bit.ly/33rg726. Accessed 03 August 2020

  89. Olugbade TO, Ojo OT (2020) Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review. BioEnergy Res:1–17

  90. Thrän D, Witt J, Schaubach K, Kiel J, Carbo M, Maier J, Ndibe C, Koppejan J, Alakangas E, Majer S, Schipfer F (2016) Moving torrefaction towards market introduction – Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy 89:184–200

    Article  Google Scholar 

  91. Hawkins Wright (2020) The Black Pellet Market Outlook. Hawkins Wright Limited Accessed 03 August 2020

Download references

Acknowledgements

The support of the Hydrogen and Fuel Cell Laboratory, Centre of Hydrogen Energy, and the Institute of Future Energy all at Universiti Teknologi Malaysia (UTM) Skudai Campus in Johor are all gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bemgba B. Nyakuma or Tuan Amran T. Abdullah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyakuma, B.B., Oladokun, O., Wong, S.L. et al. Torrefaction of oil palm empty fruit bunch pellets: product yield, distribution and fuel characterisation for enhanced energy recovery. Biomass Conv. Bioref. 13, 755–775 (2023). https://doi.org/10.1007/s13399-020-01185-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01185-z

Keywords

Navigation