Skip to main content
Log in

Taguchi optimization of minimum quantity lubrication turning of AISI-4320 steel using biochar nanofluid

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this research work, the effect of minimum quantity lubrication (MQL) parameters on the material removal rate and surface roughness of AISI-4320 steel using biochar nanofluid in turning process was studied. The main aim of this present work was to optimize the process parameters of MQL turning process using Taguchi method. The turning process outputs such as material removal rate and surface roughness were measured and analyzed using gray relational grades to determine the process efficiency using biochar nanofluid. The study was conducted using Taguchi L9 orthogonal array followed by grey relational method. According to the analysis, the nanofluid concentration in minimum quantity lubrication was the most influencing process parameter with the lowest fluid flow rate to produce the highest material removal rate of 58.312 mm3/s and low surface roughness of 3.236 μm. The machining process parameter levels such as A3B1C3 are found to be the promising process variable levels, where the highest material removal rate and lower surface roughness were produced. The SEM micrographs of the tool tip show a lower tool wear for machining with nanofluid of 2 wt.% biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sen B, Mia M, Krolczyk GM, Mandal UK, Mondal SP (2019) Eco-friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing. Int J Precis Eng Manuf-Green Tech. https://doi.org/10.1007/s40684-019-00158-6

  2. Pervaiz S, Anwar S, Qureshi I, Ahmed N (2019) Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques. Int J Precis Eng Manuf-Green Tech 6:133–145. https://doi.org/10.1007/s40684-019-00033-4

    Article  Google Scholar 

  3. Masoudi S, Esfahani MJ, Jafarian F, Mirsoleimani SA (2019) Comparison the effect of MQL, wet and dry turning on surface topography, cylindricity tolerance and sustainability. Int J Precis Eng Manuf-Green Technol. https://doi.org/10.1007/s40684-019-00042-3

  4. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101

    Article  Google Scholar 

  5. Iyappan SK, Ghosh A (2019) Small quantity lubrication assisted end milling of aluminium using sunflower oil. Int J Precis Eng Manuf-Green Technol 7:337–345. https://doi.org/10.1007/s40684-019-00081-w

    Article  Google Scholar 

  6. Khan AM, Jamil M, Salonitis K, Sarfraz S, Zhao W, He N et al (2019) Multi-objective optimization of energy consumption and surface quality in nanofluid sqcl assisted face milling. Energies 12(4):710

    Article  Google Scholar 

  7. Kaynak Y (2014) Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining. Int J Adv Manuf Technol 72(5-8):919–933

    Article  Google Scholar 

  8. Tasdelen B, Thordenberg H, Olofsson D (2008) An experimental investigation on contact length during minimum quantity lubrication (MQL) machining. J Mater Process Technol 203(1-3):221–231

    Article  Google Scholar 

  9. Werda S, Duchosal A, Le Quilliec G, Morandeau A, Leroy R (2019) Effect of minimum quantity lubrication strategies on tribological study of simulated machining operation. Mech Ind 20:624

    Article  Google Scholar 

  10. Boswell B, Islam M, Davies IJ et al (2017) A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. Int J Adv Manuf Technol 92:321–340. https://doi.org/10.1007/s00170-017-0142-3

    Article  Google Scholar 

  11. Sharma AK, Tiwari AK, Dixit AR (2016) Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J Clean Production 127:1–18

    Article  Google Scholar 

  12. Mao C, Huang Y, Zhou X, Gan H, Zhang J, Zhou Z (2014) The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol 71:1221–1228. https://doi.org/10.1007/s00170-013-5576-7

    Article  Google Scholar 

  13. Lee P, Nam JS, Li C et al (2012) An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). Int J Precis Eng Manuf 13:331–338. https://doi.org/10.1007/s12541-012-0042-2

    Article  Google Scholar 

  14. Mao C, Tang X, Zou H, Huang X, Zhou Z (2012) Investigation of grinding characteristic using nanofluid minimum quantity lubrication. Int J Precis Eng Manuf 13:1745–1752. https://doi.org/10.1007/s12541-012-0229-6

    Article  Google Scholar 

  15. Baik S, Yoon D, Lee HI, Kim JM, Lee G-S, Lee Y-Z (2008) Frictional performances of activated carbon and carbon blacks as lubricant additives. Tribol Trans 52(1):133–137. https://doi.org/10.1080/10402000802192693

    Article  Google Scholar 

  16. Mia M, Dey PR, Hossain MS, Arafat MT, Asaduzzaman M, Ullah MS, Zobaer SMT (2018) Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement 122:380–391

    Article  Google Scholar 

  17. Palanikumar K, Karunamoorthy L, Karthikeyan R (2006) Multiple Performance Optimization of machining parameters on the machining of GFRP composites using carbide (K10) tool. Mater Manuf Process 21(8):846–852. https://doi.org/10.1080/03602550600728166

    Article  Google Scholar 

  18. Muthuramalingam T, Mohan B (2013) Taguchi-grey relational based multi response optimization of electrical process parameters in electrical discharge machining. Indian J Eng Mater Sci 20:471–475

    Google Scholar 

  19. Patil PJ, Patil CR (2016) Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade. Perspect Sci 8:367–369

    Article  Google Scholar 

  20. Nwajiaku IM, Olanrewaju JS, Sato K, Tokunari T, Kitano S, Masunaga T (2018) Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. Int J Recycl Org Waste Agric 7:269–276. https://doi.org/10.1007/s40093-018-0213-y

    Article  Google Scholar 

  21. Singh G, Gupta MK, Mia M, Sharma VS (2018) Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. Int J Adv Manuf Technol 97:481–494. https://doi.org/10.1007/s00170-018-1911-3

    Article  Google Scholar 

  22. Mia M, Khan MA, Rahman SS, Dhar NR (2017) Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V. Int J Adv Manuf Technol 90(1):109–118. https://doi.org/10.1007/s00170-016-9372-z

    Article  Google Scholar 

  23. Kuppuswamy R, Zunega J, Naidoo S (2017) Flank wear assessment on discrete machining process behavior for Inconel 718. Int J Adv Manuf Technol 93(5):2097–2109. https://doi.org/10.1007/s00170-017-0623-4

    Article  Google Scholar 

  24. Pusavec F, Deshpande A, Yang S, M'Saoubi R, Kopac J, Dillon OW, Jawahir I (2014) Sustainable machining of high temperature nickel alloy–Inconel 718: part 1–predictive performance models. J Clean Prod 81:255–269

    Article  Google Scholar 

  25. Sampaio MA, Machado ÁR, Laurindo CAH, Torres RD, Amorim FL (2018) Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining. Int J Adv Manuf Technol 98:959–968. https://doi.org/10.1007/s00170-018-2342-x

    Article  Google Scholar 

  26. Yıldırım ÇV, Sarıkaya M, Kıvak T, Şirin Ş (2019) The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribol Int 134:443–456

    Article  Google Scholar 

  27. Zhang S, Li JF, Wang YW (2012) Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J Clean Prod 32:81–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagatheesan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagatheesan, K., Babu, K. Taguchi optimization of minimum quantity lubrication turning of AISI-4320 steel using biochar nanofluid. Biomass Conv. Bioref. 13, 927–934 (2023). https://doi.org/10.1007/s13399-020-01111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01111-3

Keywords

Navigation