Skip to main content
Log in

Improved biomethanation of horse manure through acid-thermal pretreatment and supplementation of iron nanoparticles under mesophilic and thermophilic conditions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study aimed to investigate the impact of dilute acid-thermal pretreatment of horse manure (HM) on the characteristic changes followed by biomethanation of untreated (control) and pretreated HM using iron oxide (Fe3O4) nanoparticles (NPs) as additives at concentrations of 20 mg/L, 40 mg/L and 60 mg/L at mesophilic (35 ± 2 °C) and thermophilic (55 ± 2 °C) temperature conditions. The acid-thermal pretreatment enabled the depolymerisation of the lignocellulosic crystalline structure of HM resulting in the reduction of cellulose and hemicellulose by 93 % and 96 % respectively. Addition of deficient or surplus concentration of NPs or micronutrients may adversely influence the activity of microbes because the release of key enzymes is ion dependant. Addition of appropriate concentration of Fe3O4 NPs facilitates the release of Fe2+ and Fe3+ ions that contribute to the release of key enzymes, but the addition of surplus concentration results in the release of reactive and toxic-free radicals or intermediates that decline the activity of the microorganisms. Results disclosed that the maximum methane yield of 0.16 L/g CODreduced and 0.175 L/g CODreduced was achieved under mesophilic and thermophilic conditions from pretreated HM with an addition of 40 mg/L of Fe3O4 NPs with a COD reduction of 68 % and 56 %, respectively, whereas it was 0.14 L/g CODreduced and 0.15 L/g CODreduced with an addition of 60 mg/L of Fe3O4 NPs with corresponding COD reduction of 58 % and 62.5 %, respectively, from untreated HM. Based on the findings achieved in the study, it is proven that the HM is a potential feedstock for biogas/methane generation. Incorporating the advanced techniques such as acid-thermal pretreatment and addition of supplements in the form of NPs further enhances the biomethanation process making it more lucrative and feasible for implementation at full scale.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hadin A, Eriksson O, Hillman K (2016) A review of potential critical factors in horse keeping for anaerobic digestion of horse manure. Renew Sust Energ Rev 65:432–442. https://doi.org/10.1016/j.rser.2016.06.058

    Article  Google Scholar 

  2. Sun L, Pope P, Eijsink V, Schnurer A (2015) Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol 8(5):815–827. https://doi.org/10.1111/1751-7915.12298

    Article  Google Scholar 

  3. Monch-Tegeder M, Lemmer A, Oechsner H (2014) Enhancement of methane production with horse manure supplement and pretreatment in a full-scale biogas process. Energy 73:523–530. https://doi.org/10.1016/j.energy.2014.06.051

    Article  Google Scholar 

  4. Wartell BA, Krumins V, Alt J, Kang K, Schwab BJ, Fennell DE (2012) Methane production from horse manure and stall waste with softwood bedding. Bioresour Technol 112:42–50. https://doi.org/10.1016/j.biortech.2012.02.012

    Article  Google Scholar 

  5. Airaksinen S, Heinonen-Tanski H, Heiskanen ML (2001) Quality of different bedding materials and their influence on the compostability of horse manure. J Equine Vet 21(3):125–130. https://doi.org/10.1016/s0737-0806(01)70108-6

    Article  Google Scholar 

  6. Abdelwahab TAM, Mohanty MK, Sahoo PK, Behera D (2020) Application of nanoparticles for biogas production: current status and perspectives. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects:1–13. https://doi.org/10.1080/15567036.2020.1767730

  7. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  Google Scholar 

  8. Kim J, Park C, Kim T, Lee M, Kim S, Kim S, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with WAS. J Biosci Bioeng 95(3):271–275. https://doi.org/10.1016/s1389-1723(03)80028-2.

    Article  Google Scholar 

  9. Mostofian B, Cai CM, Smith MD, Petridis L, Cheng X, Wyman CE, Smith JC (2016) Local phase separation of Co-solvents enhances pre-treatment of biomass for bioenergy applications. J Am Chem Soc 138(34):10869–10878. https://doi.org/10.1021/jacs.6b03285

    Article  Google Scholar 

  10. Shirkavand E, Baroutian S, Gapes DJ, Young B (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pre-treatment A review. Renew Sust Energ Rev 54:217–234. https://doi.org/10.1016/j.rser.2015.10.003

    Article  Google Scholar 

  11. Shuai L, Amiri MT, Questell Santiago YM, Heroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science. 354(6310):329–333. https://doi.org/10.1126/science.aaf7810

    Article  Google Scholar 

  12. Narron RH, Kim H, Chang H, Jameel H, Park S (2016) Biomass pre-treatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol 38:39–46. https://doi.org/10.1016/j.copbio.2015.12.018

    Article  Google Scholar 

  13. Kuruti K, Gangagni Rao A, Gandu B, Kiran G, Mohammad S, Sailaja S, Swamy YV (2015) Generation of bioethanol and VFA through anaerobic acidogenic fermentation route with press mud obtained from sugar mill as a feedstock. Bioresour Technol 192:646–653. https://doi.org/10.1016/j.biortech.2015.05.104

    Article  Google Scholar 

  14. Choong YY, Norli I, Abdullah AZ, Yhaya MF (2016) Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review. Bioresour Technol 209:369–379. https://doi.org/10.1016/j.biortech.2016.03.028

    Article  Google Scholar 

  15. Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35:992–998. https://doi.org/10.1016/j.biombioe.2010.12.022

    Article  Google Scholar 

  16. Pobeheim H, Munk B, Johansson J, Guebitz GM (2010) Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Bioresour Technol 101:836–839. https://doi.org/10.1016/j.biortech.2009.08.076

    Article  Google Scholar 

  17. Takashima M, Shimada K, Speece RE (2011) Minimum requirements for trace metals (iron, nickel, cobalt, and zinc) in thermophilic and mesophilic methane fermentation from glucose. Water Environ Res 83:339–346. https://doi.org/10.2175/106143010x12780288628895

    Article  Google Scholar 

  18. Zhang Y, Feng Y, Quan X (2015) Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment. Waste Manag 38:297–302. https://doi.org/10.1016/j.wasman.2015.01.036

    Article  Google Scholar 

  19. Khanal SK, Huang JC (2006) Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater. Water Environ Res 78(4):397–408. https://doi.org/10.2175/106143006x98804

    Article  Google Scholar 

  20. Okoro OV, Sun Z (2019) Desulphurisation of biogas: a systematic qualitative and economic-based quantitative review of alternative strategies. ChemEngineering 3(3):76. https://doi.org/10.3390/chemengineering3030076

    Article  Google Scholar 

  21. Abdelsalam E, Samer M, Attia YA, Abdel Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87:592–598. https://doi.org/10.1016/j.renene.2015.10.053

    Article  Google Scholar 

  22. Casals E, Barrena R, Garcia A, Gonzalez E, Delgado L, Busquets Fite M, Font X, Arbiol J, Glatzel P, Kvashnina K, Sanchez A, Puntes V (2014) Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small. 10(14):2801–2808. https://doi.org/10.1002/smll.201303703

    Article  Google Scholar 

  23. Dehhaghi M, Tabatabaei M, Aghbashlo M, Panahi HKS, Nizami AS (2019) A state-of-the-art review on the application of nanomaterials for enhancing biogas production. J Environ Manag 251:109597. https://doi.org/10.1016/j.jenvman.2019.109597

    Article  Google Scholar 

  24. Juntupally S, Begum S, Allu SK, Nakkasunchi S, Madugul M, Anupoju GR (2017) Relative evaluation of micronutrients (MN) and its respective nanoparticles (NPs) as additives for the enhanced methane generation. Bioresour Technol 238:290–295. https://doi.org/10.1016/j.biortech.2017.04.049

    Article  Google Scholar 

  25. Wang Y, Wang D, Fang H (2018) Comparison of enhancement of anaerobic digestion of waste activated sludge through adding nano-zero valent iron and zero valent iron. RSC Adv 8:27181–27190. https://doi.org/10.1039/c8ra05369c

    Article  Google Scholar 

  26. Tabatabaei M, Aghbashlo M, Valijanian E, Kazemi Shariat Panahi H, Nizami AS, Ghanavati H, Sulaiman A, Mirmohamadsadeghi S, Karimi K (2019) A comprehensive review on recent biological innovations to improve biogas production, part 1: upstream strategies. Renew Energy 146:1204–1220. https://doi.org/10.1016/j.renene.2019.07.047

    Article  Google Scholar 

  27. Sekoai PT, Ouma CNM, Du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397. https://doi.org/10.1016/j.fuel.2018.10.030

    Article  Google Scholar 

  28. Rahimzadeh H, Tabatabaei M, Aghbashlo M, Panahi HKS, Rashidi A, Goli SAH, Mostafaei M, Ardjmand M, Nizami AS (2018) Potential of acid-activated bentonite and SO3H-functionalized MWCNTs for biodiesel production from residual olive oil under biorefinery scheme. Front Energy Res 6:137–147. https://doi.org/10.3389/fenrg.2018.00137

    Article  Google Scholar 

  29. Ali A, Mahar RB, Soomro RA, Sherazi STH (2017) Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 39:1815–1822. https://doi.org/10.1080/15567036.2017.1384866

  30. Ambuchi JJ, Zhang Z, Feng Y (2016) Biogas enhancement using iron oxide nanoparticles and multi-wall carbon nanotubes. Int J Chem Biomol Eng 10:1305–1311

    Google Scholar 

  31. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119. https://doi.org/10.1016/j.enconman.2016.05.051

    Article  Google Scholar 

  32. Ma D, Wang J, Chen T, Shi C, Peng S, Yue Z (2015) Iron-oxide-promoted anaerobic process of the aquatic plant of curly leaf pondweed. Energy Fuel 29:4356–4360. https://doi.org/10.1021/acs.energyfuels.5b00573

    Article  Google Scholar 

  33. Metcalf I (2003) Wastewater Engineering; Treatment and Reuse, fourth edn. McGraw-Hill, Boston

    Google Scholar 

  34. Temizel I, Emadian SM, Di Addario M, Onay TT, Demirel B, Copty NK, Karanfil T (2017) Effect of nano-ZnO on biogas generation from simulated landfills. Waste Manag 63:18–26. https://doi.org/10.1016/j.wasman.2017.01.017

    Article  Google Scholar 

  35. Garcia A, Delgado L, Torà JA, Casals E, González E, Puntes V, Font X, Carrera J, Sánchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199:64–72. https://doi.org/10.1016/j.jhazmat.2011.10.057.

    Article  Google Scholar 

  36. Yu B, Shan A, Zhang D, Lou Z, Yuan H, Huang X, Zhu N, Hu X (2015) Dosing time of ferric chloride to disinhibit the excessive volatile fatty acids in sludge thermophilic anaerobic digestion system. Bioresour Technol 189:154–161. https://doi.org/10.1016/j.biortech.2015.03.144

    Article  Google Scholar 

  37. Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77. https://doi.org/10.1016/j.bej.2012.10.004

    Article  Google Scholar 

  38. Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y (2017) Bacteria-enhanced dilute acid pre-treatment of lignocellulosic biomass. Bioresour Technol 245:419–425. https://doi.org/10.1016/j.biortech.2017.08.037

    Article  Google Scholar 

  39. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA, AWWA, WEF, Washington D.C

    Google Scholar 

  40. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker DLAP (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure 1617(1):1–16. http://www.nrel.gov/biomass/analytical-procedures.html. Accessed 20 Aug 2020

  41. Berger P, Adelman NB, Beckman KJ, Campbell DJ, Ellis AB, Lisensky GC (1999) Preparation and properties of an aqueous ferro fluid. J Chem 76(7):943. https://doi.org/10.1021/ed076p943

    Article  Google Scholar 

  42. Neshat SA, Mohammadi M, Najafpour GD, Lahijani P (2017) Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew Sust Energ Rev 79:308–322. https://doi.org/10.1016/j.rser.2017.05.137

    Article  Google Scholar 

  43. Wang X, Lu X, Li F, Yang G (2014) Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PLoS One 9(5):e97265. https://doi.org/10.1371/journal.pone.0097265

    Article  Google Scholar 

  44. Yogamalar R, Srinivasan R, Vinu A, Ariga K, Bose AC (2009) X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun 149(43-44):1919–1923. https://doi.org/10.1016/j.ssc.2009.07.043

    Article  Google Scholar 

  45. Li GY, Jiang YR, Huang KL, Ding P, Yao LL (2008) Kinetics of adsorption of Saccharomyces cerevisiae mandelated dehydrogenase on magnetic Fe3O4 chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp 320(1-3):11–18. https://doi.org/10.1016/j.colsurfa.2008.01.017

    Article  Google Scholar 

  46. Noonari AA, Mahar RB, Sahito AR, Brohi KM (2018) Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: effect of Fe3O4 nanoparticles on methane yield. Renew Energy 133:1046–1054. https://doi.org/10.1016/j.renene.2018.10.113

    Article  Google Scholar 

  47. Chen R, Konishi Y, Nomura T (2018) Enhancement of methane production by Methanosarcina barkeri using Fe3O4 nanoparticles as iron sustain release agent. Adv Powder Technol 29:2429–2433. https://doi.org/10.1016/j.apt.2018.06.022

    Article  Google Scholar 

  48. Meegoda JN, Li B, Patel K, Wang LB (2018) A review of the processes, parameters, and optimization of anaerobic digestion. Int J Environ Res Public Health 15(10):2224. https://doi.org/10.3390/ijerph15102224

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director (IICT/Pubs./2019/417), Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology (IICT), Department of Science and Technology (DST) and Department of Biotechnology (DBT), GoI towards financial support and continuous encouragement to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangagni Rao Anupoju.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Biomethanation of horse manure using nanoparticles and acid-thermal pretreatment.

• Addition of Fe3O4 NPs shortened the batch residence time at thermophilic condition.

• Ninety percent destruction of lignocelluloses in horse manure (HM) due to pretreatment.

• Addition of 40 mg/L of NPs is ideal for untreated HM, while 60 mg/L for pretreated.

• Improved methane yield and COD reduction under mesophilic and thermophilic conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juntupally, S., Arelli, V., Begum, S. et al. Improved biomethanation of horse manure through acid-thermal pretreatment and supplementation of iron nanoparticles under mesophilic and thermophilic conditions. Biomass Conv. Bioref. 12, 2993–3006 (2022). https://doi.org/10.1007/s13399-020-01085-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01085-2

Keywords

Navigation