Skip to main content

Advertisement

Log in

Progress in applications of advanced oxidation processes for promotion of biohydrogen production by fermentation processes

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Advanced oxidation processes (AOPs) are powerful methods for treating substrates using radicals that are generated in situ. This study reviewed applications of AOPs in enhancement of biohydrogen production. The AOPs are applied in substrate pretreatment because of their ability to break the complex structure of lignocellulosic biomass for ease of subsequent hydrolysis. The mechanism of solubilization of complex organics resulting in increased biodegradability of substrate during pretreatment has been suggested. Documented studies indicate that up to 98% color removal from organic wastewater is possible by the use of AOPs. Furthermore, a combination of AOPs with biological processes can achieve more than 90% COD removal from biohydrogen production effluent. Sonication, microwave-enhanced AOPs, and electrochemical treatment are the most applied AOPs in enrichment of biohydrogen with up to fivefold increase in biohydrogen yield achieved after electrochemical pre-treatment. The mechanism of enhancement of hydrogen yield in dark fermentation after pretreatment of the substrate and inoculum with AOPs has been proposed. The excess sludge produced during hydrogen fermentation can be pretreated with ozone and ultrasound before biomethanation process. More studies on co-production of biohydrogen and electricity through electrochemical oxidation in fuel cells are necessary. This study proposes the integration of AOPs with conventional processes in biorefinery production approach with aim of improving biohydrogen yields, co-producing it with other biofuels, and reducing the process costs. Future studies should focus on the scale-up of AOPs for commercial applications. Comparative studies on energy requirements for various AOPs applications are lacking and should be carried out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57(1-2):56–64

    Article  Google Scholar 

  2. Kumar G, Mathimani T, Rene ER, Pugazhendhi A (2019) Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. Int J Hydrog Energy 44(26):13106–13113

    Article  Google Scholar 

  3. Pugazhendhi A, Shobana S, Nguyen DD, Banu JR, Sivagurunathan P, Chang SW, Ponnusamy VK, Kumar G (2019) Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. Int J Hydrog Energy 44(3):1431–1440

    Article  Google Scholar 

  4. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12(3-5):291–300

    Article  Google Scholar 

  5. Pugazhendhi A, Anburajan P, Park JH, Kumar G, Sivagurunathan P, Kim SH (2017) Process performance of biohydrogen production using glucose at various HRTs and assessment of microbial dynamics variation via q-PCR. Int J Hydrog Energy 42(45):27550–27557

    Article  Google Scholar 

  6. Sivagurunathan P, Kumar G, Bakonyi P, Kim SH, Kobayashi T, Xu KQ, Lakner G, Tóth G, Nemestóthy N, Bélafi-Bakó K (2016) A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int J Hydrogen Energy 41(6):3820–3836

    Article  Google Scholar 

  7. Kapdan IK, Kargi F, Oztekin R, Argun H (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrogen Energy 34(5):2201–2207

    Article  Google Scholar 

  8. Catal T, Liu H, Fan Y, Bermek H (2019) A clean technology to convert sucrose and lignocellulose in microbial electrochemical cells into electricity and hydrogen. Bioresour Technol Report 5:331–334

    Article  Google Scholar 

  9. Yasin NH, Mumtaz T, Hassan MA (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manag 130:375–385

    Article  Google Scholar 

  10. Wadjeam P, Reungsang A, Imai T, Plangklang P (2019) Co-digestion of cassava starch wastewater with buffalo dung for bio-hydrogen production. Int J Hydrogen Energy 44(29):14694–14706

    Article  Google Scholar 

  11. Singh L, Siddiqui MF, Ahmad A, Rahim MH, Sakinah M, Wahid ZA (2013) Biohydrogen production from palm oil mill effluent using immobilized mixed culture. J Ind Eng Chem 19(2):659–664

    Article  Google Scholar 

  12. Keskin T, Abubackar HN, Arslan K, Azbar N (2019) Biohydrogen production from solid wastes. Biohydrogen 321–346. Elsevier. https://doi.org/10.1016/B978-0-444-64203-5.00012-5

  13. Saratale GD, Saratale RG, Banu JR, Chang JS (2019) Biohydrogen production from renewable biomass resources. In Biohydrogen 247–277. Elsevier. https://doi.org/10.1016/B978-0-444-64203-5.00010-1

  14. Yin Y, Wang J (2015) Biohydrogen production using waste activated sludge disintegrated by gamma irradiation. Appl Energy 155:434–439

    Article  Google Scholar 

  15. Zhang Z, He C, Sun T, Zhang Z, Song K, Wu Q, Zhang Q (2016) Thermo-physical properties of pretreated agricultural residues for bio-hydrogen production using thermo-gravimetric analysis. Int J Hydrogen Energy 41(10):5234–5242

    Article  Google Scholar 

  16. Chen JL, Ortiz R, Steele TW, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32(8):1523–1534

    Article  Google Scholar 

  17. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M (2018) Hydrogen production from biomass using dark fermentation. Renew Sust Energ Rev 91:665–694

    Article  Google Scholar 

  18. Shao W, Wang Q, Rupani PF, Krishnan S, Ahmad F, Rezania S, Rashid MA, Sha C, Din MFM (2020) Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species. Energy 197:117199

    Article  Google Scholar 

  19. Kumar G, Ponnusamy VK, Bhosale RR, Shobana S, Yoon JJ, Bhatia SK, Banu JR, Kim SH (2019) A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresour Technol 287:121427

    Article  Google Scholar 

  20. Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  Google Scholar 

  21. Wang L, Liu W, Kang L, Yang C, Zhou A, Wang A (2014) Enhanced biohydrogen production from waste activated sludge in combined strategy of chemical pretreatment and microbial electrolysis. Int J Hydrogen Energy 39(23):11913–11919

    Article  Google Scholar 

  22. Datar R, Huang J, Maness PC, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy 32(8):932–939

    Article  Google Scholar 

  23. Kim S, Choi K, Kim JO, Chung J (2013) Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies. Biodegrad 24(6):753–764

    Article  Google Scholar 

  24. Morone A, Sharma G, Sharma A, Chakrabarti T, Pandey RA (2018) Evaluation, applicability and optimization of advanced oxidation process for pretreatment of rice straw and its effect on cellulose digestibility. Renew Energy 120:88–97

    Article  Google Scholar 

  25. Pešoutová R, Hlavínek P, Matysíková J (2017) Use of advanced oxidation processes for textile wastewater treatment–a review. Food Environ Safety J 10(3)

  26. Yoo JM (2020) Catalytic degradation of phenols by recyclable CVD graphene films. Studies Graphene-Based Nanomater Biomed Applic. Springer, Singapore, pp 15–27

    Book  Google Scholar 

  27. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297

    Article  Google Scholar 

  28. Pawar SS, van Niel EW (2013) Thermophilic biohydrogen production: how far are we? Appl Microbiol Biotechnol 97(18):7999–8009

    Article  Google Scholar 

  29. Goud RK, Mohan SV (2012) Acidic and alkaline shock pretreatment to enrich acidogenic biohydrogen producing mixed culture: long term synergetic evaluation of microbial inventory, dehydrogenase activity and bio-electro kinetics. RSC Adv 2(15):6336–6353

    Article  Google Scholar 

  30. Hafez H, Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, El Naggar H (2009) Comparative assessment of decoupling of biomass and hydraulic retention times in hydrogen production bioreactors. Int J Hydrogen Energy 34(18):7603–7611

    Article  Google Scholar 

  31. Fernandes BS, Saavedra NK, Maintinguer SI, Sette LD, Oliveira VD, Varesche MB, Zaiat M (2013) The effect of biomass immobilization support material and bed porosity on hydrogen production in an upflow anaerobic packed-bed bioreactor. Appl Biochem Biotechnol 170(6):1348–1366

    Article  Google Scholar 

  32. Ziara RM, Miller DN, Subbiah J, Dvorak BI (2019) Lactate wastewater dark fermentation: The effect of temperature and initial pH on biohydrogen production and microbial community. Int J Hydrogen Energy 44(2):661–673

    Article  Google Scholar 

  33. Kumar G, Sivagurunathan P, Park JH, Park JH, Park HD, Yoon JJ, Kim SH (2016) HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose. Bioresour Technol 206:188–194

    Article  Google Scholar 

  34. Krishnan S, Singh L, Sakinah M, Thakur S, Wahid ZA, Alkasrawi M (2016) Process enhancement of hydrogen and methane production from palm oil mill effluent using two-stage thermophilic and mesophilic fermentation. Int J Hydrogen Energy 41(30):12888–12898

    Article  Google Scholar 

  35. Ding L, Cheng J, Xia A, Jacob A, Voelklein M, Murphy JD (2016) Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro-and micro-algal biomass. Bioresour Technol 218:224–231

    Article  Google Scholar 

  36. Vardar-Schara G, Maeda T, Wood TK (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 1(2):107–125

    Article  Google Scholar 

  37. Balderas-Hernandez VE, Maldonado KP, Sánchez A, Smoliński A, Rodriguez AD (2020) Improvement of hydrogen production by metabolic engineering of Escherichia coli: Modification on both the PTS system and central carbon metabolism. Int J Hydrogen Energ 45(9):5687–5696

  38. Sinharoy A, Pakshirajan K (2020) A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion. Renew Energy 147:864–873

    Article  Google Scholar 

  39. Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F (2017) Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ Sci Pollut Res 24(9):8790–8804

    Article  Google Scholar 

  40. Salimi M, Esrafili A, Gholami M, Jafari AJ, Kalantary RR, Farzadkia M, Kermani M, Sobhi HR (2017) Contaminants of emerging concern: a review of new approach in AOP technologies. Environ Monit Assess 189(8):414

    Article  Google Scholar 

  41. Fall C, Silva-Hernández BC, Hooijmans CM, Lopez-Vazquez CM, Esparza-Soto M, Lucero-Chávez M, van Loosdrecht MC (2018) Sludge reduction by ozone: insights and modeling of the dose-response effects. J Environ Manag 206:103–112

    Article  Google Scholar 

  42. Pisutpaisal N, Tanikkul P, Phoochinda W (2014) Improvement of mesophilic biohydrogen production from palm oil mill effluent using ozonation process. Energy Procedia 50:723–728

    Article  Google Scholar 

  43. Cortez S, Teixeira P, Oliveira R, Mota M (2011) Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J Environ Manag 92(3):749–755

    Article  Google Scholar 

  44. Zeng Z, Zou H, Li X, Sun B, Chen J, Shao L (2012) Ozonation of phenol with O3/Fe (II) in acidic environment in a rotating packed bed. Ind Eng Chem Res 51(31):10509–10516

    Article  Google Scholar 

  45. Bundhoo ZM (2017) Effects of microwave and ultrasound irradiations on dark fermentative bio-hydrogen production from food and yard wastes. Int J Hydrogen Energy 42(7):4040–4050

    Article  Google Scholar 

  46. Guo L, Li XM, Bo X, Yang Q, Zeng GM, Liao DX, Liu JJ (2008) Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour Technol 99(9):3651–3658

    Article  Google Scholar 

  47. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18(1):1–8

    Article  Google Scholar 

  48. Chung J, Lee M, Ahn J, Bae W, Lee YW, Shim H (2009) Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation. J Hazard Mater 162(1):10–16

    Article  Google Scholar 

  49. Arimi MM, Zhang Y, Namango SS, Geißen SU (2016) Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes. J Environ Manag 168:10–15

    Article  Google Scholar 

  50. Guerreiro LF, Rodrigues CS, Duda RM, de Oliveira RA, Boaventura RA, Madeira LM (2016) Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation. J Environ Manag 181:237–248

    Article  Google Scholar 

  51. Hermosilla D, Cortijo M, Huang CP (2009) Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci Total Environ 407(11):3473–3481

    Article  Google Scholar 

  52. Arimi MM (2017) Integration of Fenton with biological and physical-chemical methods in the treatment of complex effluents: a review. Environ Technol Rev 6(1):156–173

    Article  Google Scholar 

  53. Bremner DH, Burgess AE, Houllemare D, Namkung KC (2006) Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Appl Catal B Environ 63(1-2):15–19

    Article  Google Scholar 

  54. Deval AS, Parikh HA, Kadier A, Chandrasekhar K, Bhagwat AM, Dikshit AK (2017) Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation. Int J Hydrogen Energy 42(2):1130–1141

    Article  Google Scholar 

  55. Butti SK, Velvizhi G, Sulonen ML, Haavisto JM, Koroglu EO, Cetinkaya AY, Singh S, Arya D, Modestra JA, Krishna KV, Verma A (2016) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sust Energ Rev 53:462–476

    Article  Google Scholar 

  56. Caravaca A, de Lucas-Consuegra A, Calcerrada AB, Lobato J, Valverde JL, Dorado F (2013) From biomass to pure hydrogen: electrochemical reforming of bio-ethanol in a PEM electrolyser. Appl Catal B Environ 134:302–309

    Article  Google Scholar 

  57. Son HS, Lee SJ, Cho IH, Zoh KD (2004) Kinetics and mechanism of TNT degradation in TiO2 photocatalysis. Chemosphere 57(4):309–317

    Article  Google Scholar 

  58. Vineetha MN, Matheswaran M, Sheeba KN (2013) Photocatalytic colour and COD removal in the distillery effluent by solar radiation. Solar Energy 91:368–373

    Article  Google Scholar 

  59. Hamid S, Ivanova I, Jeon TH, Dillert R, Choi W, Bahnemann DW (2017) Photocatalytic conversion of acetate into molecular hydrogen and hydrocarbons over Pt/TiO2: pH dependent formation of Kolbe and Hofer-Moest products. J Catal 349:128–135

    Article  Google Scholar 

  60. Gogoi N, Borah G, Gogoi PK, Chetia TR (2018) TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation. Chem Phys Lett 692:224–231

    Article  Google Scholar 

  61. Nissilä ME, Lay CH, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates–a review. Biomass Bioenergy 67:145–159

    Article  Google Scholar 

  62. Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 75:101–118

    Article  Google Scholar 

  63. Rafieenia R, Lavagnolo MC, Pivato A (2018) Pre-treatment technologies for dark fermentative hydrogen production: current advances and future directions. Waste Manag 71:734–748

    Article  Google Scholar 

  64. Liu C, Shi W, Kim M, Yang Y, Lei Z, Zhang (2013) Photocatalytic pretreatment for the redox conversion of waste activated sludge to enhance biohydrogen production. Int J Hydrogen Energy 38(18):7246–7252

    Article  Google Scholar 

  65. Battista F, Mancini G, Ruggeri B, Fino D (2016) Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products. Renew Energy 88:401–407

    Article  Google Scholar 

  66. Yan Y, Feng L, Zhang C, Wisniewski C, Zhou Q (2010) Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0. Water Res 44(11):3329–3336

    Article  Google Scholar 

  67. Kumar MD, Kaliappan S, Gopikumar S, Zhen G, Banu JR (2019) Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel 253:833–839

    Article  Google Scholar 

  68. Ahn JH, Shin SG, Hwang S (2009) Effect of microwave irradiation on the disintegration and acidogenesis of municipal secondary sludge. Chem Eng J 153(1-3):145–150

    Article  Google Scholar 

  69. Yeneneh AM, Kayaalp A, Sen TK, Ang HM (2015) Effect of microwave and combined microwave-ultrasonic pretreatment on anaerobic digestion of mixed real sludge. J Environ Chem Eng 3(4):2514–2521

    Article  Google Scholar 

  70. Zhao Y, Chen Y (2011) Nano-TiO2 enhanced photofermentative hydrogen produced from the dark fermentation liquid of waste activated sludge. Environ Sci Technol 45(19):8589–8595

    Article  Google Scholar 

  71. Yang G, Wang J (2019) Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. Bioresour Technol 275:10–18

    Article  Google Scholar 

  72. Tanikkul P, Pisutpaisal N (2014) Biohydrogen production under thermophilic condition from ozonated palm oil mill effluent. Energy Procedia 61:1234–1238

    Article  Google Scholar 

  73. Malik SN, Ghosh PC, Vaidya AN, Mudliar SN (2018) Ozone pretreatment of biomethanated distillery wastewater in a semi batch reactor: mapping pretreatment efficiency in terms of COD, color, toxicity and biohydrogen generation. Biofuel. https://doi.org/10.1080/17597269.2017.1416521

  74. Wimonsong P, Nitisoravut S (2009) Pretreatment evaluation and its application on palm oil mill effluent for bio-hydrogen enhancement and methanogenic activity repression. Pak J Biol Sci 12(16):1127

    Article  Google Scholar 

  75. Elbeshbishy E, Hafez H, Nakhla G (2010) Enhancement of biohydrogen producing using ultrasonication. Int J Hydrogen Energy 35(12):6184–6193

    Article  Google Scholar 

  76. Elbeshbishy E, Hafez H, Nakhla G (2011) Ultrasonication for biohydrogen production from food waste. Int J Hydrogen Energy 36(4):2896–2903

    Article  Google Scholar 

  77. Gadhe A, Sonawane SS, Varma MN (2014) Ultrasonic pretreatment for an enhancement of biohydrogen production from complex food waste. Int J Hydrogen Energy 39(15):7721–7729

    Article  Google Scholar 

  78. Gadhe A, Sonawane SS, Varma MN (2014) Evaluation of ultrasonication as a treatment strategy for enhancement of biohydrogen production from complex distillery wastewater and process optimization. Int J Hydrogen Energy 39(19):10041–10050

    Article  Google Scholar 

  79. Gadhe A, Sonawane SS, Varma MN (2015) Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. Int J Hydrogen Energy 40(32):9942–9951

    Article  Google Scholar 

  80. Budiman PM, Wu TY (2016) Ultrasonication pre-treatment of combined effluents from palm oil, pulp and paper mills for improving photofermentativebiohydrogen production. Energ Convers Manag 19:142–150

    Article  Google Scholar 

  81. Liu C, Yang Y, Wang Q, Kim M, Zhu Q, Li D, Zhang Z (2012) Photocatalytic degradation of waste activated sludge using a circulating bed photocatalytic reactor for improving biohydrogen production. Bioresour Technol 125:30–36

    Article  Google Scholar 

  82. Li D, Zhao Y, Wang Q, Yang Y, Zhang Z (2013) Enhanced biohydrogen production by accelerating the hydrolysis of macromolecular components of waste activated sludge using TiO2 photocatalysis as a pretreatment. Open J Appl Sci 3(02):155

    Article  Google Scholar 

  83. Devadoss A, Sudhagar P, Ravidhas C, Hishinuma R, Terashima C, Nakata K, Kondo T, Shitanda I, Yuasa M, Fujishima (2014) Simultaneous glucose sensing and biohydrogen evolution from direct photoelectrocatalytic glucose oxidation on robust Cu2O–TiO2 electrodes. Phys Chem Chem Phys 16(39):21237–21242

    Article  Google Scholar 

  84. Liu C, Lei Z, Yang Y, Zhang Z (2013) Preliminary trial on degradation of waste activated sludge and simultaneous hydrogen production in a newly-developed solar photocatalytic reactor with AgX/TiO2-coated glass tubes. Water Res 47(14):4986–4992

    Article  Google Scholar 

  85. Thungklin P, Reungsang A, Sittijunda S (2011) Hydrogen production from sludge of poultry slaughterhouse wastewater treatment plant pretreated with microwave. Int J Hydrogen Energy 36(14):8751–8757

    Article  Google Scholar 

  86. Li Q, Guo C, Liu CZ (2014) Dynamic microwave-assisted alkali pretreatment to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum. Biomass Bioenergy 64:220–229

    Article  Google Scholar 

  87. Liu CZ, Cheng XY (2010) Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrogen Energy 35(17):8945–8952

    Article  Google Scholar 

  88. Wu J, Upreti S, Ein-Mozaffari F (2013) Ozone pretreatment of wheat straw for enhanced biohydrogen production. Int J Hydrogen Energy 38(25):10270–10276

    Article  Google Scholar 

  89. Tian X, Wang C, Trzcinski AP, Lin L, Ng WJ (2015) Interpreting the synergistic effect in combined ultrasonication–ozonation sewage sludge pre-treatment. Chemosphere 140:63–71

    Article  Google Scholar 

  90. Pisutpaisal N, Hoasagul S (2012) Kinetics of biohydrogen production from ozonated palm oil mill effluent using C. butyricum and C. acetobutylicum co-culture. In Adv Mater Res 512:1515–1519 Trans Tech Public

    Article  Google Scholar 

  91. Yin Y, Wang J (2018) Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. Bioresour Technol 268:52–59

    Article  Google Scholar 

  92. Ozkan L, Erguder TH, Demirer GN (2011) Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int J Hydrogen Energy 36(1):382–389

    Article  Google Scholar 

  93. Zhou A, Yang C, Kong F, Liu D, Chen Z, Ren N, Wang A (2013) Improving the short-chain fatty acids production of waste activated sludge stimulated by a bi-frequency ultrasonic pretreatment. J Environ Biol 34(2 suppl):381

    Google Scholar 

  94. Yang G, Wang J (2018) Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production. Bioresour Technol 255:7–15

    Article  Google Scholar 

  95. Babel S, Leaño EP (2015) Effects of Thermophilic Heat Pretreatment of Mixed Inoculum on Biohydrogen Production from Synthetic and Sugarcane Mill Wastewaters. Sci Technol Asia 20:55–66

  96. Rafieenia R, Pivato A, Lavagnolo MC, Cossu R (2018) Pre-treating anaerobic mixed microflora with waste frying oil: A novel method to inhibit hydrogen consumption. Waste Manag 71:129–136

    Article  Google Scholar 

  97. Mohammadi P, Ibrahim S, Annuar MS (2012) Comparative study on the effect of various pretreatment methods on the enrichment of hydrogen producing bacteria in anaerobic granulated sludge from brewery wastewater. Korean J Chem Eng 29(10):1347–1351

    Article  Google Scholar 

  98. Wang J, Yin Y (2017) Enrichment of hydrogen-producing microorganisms. Biohydrogen Prod Organ Waste. Springer, Singapore, pp 69–121

    Google Scholar 

  99. Zhang K, Ren NQ, Wang AJ (2014) Enhanced biohydrogen production from corn stover hydrolyzate by pretreatment of two typical seed sludges. Int J Hydrogen Energy 39(27):14653–14662

    Article  Google Scholar 

  100. Pachapur VL, Kutty P, Pachapur P, Brar SK, Le Bihan Y, Galvez-Cloutier R, Buelna G (2019) Seed pretreatment for increased hydrogen production using mixed-culture systems with advantages over pure-Culture systems. Energies 12(3):530

    Article  Google Scholar 

  101. Pachapur V, Kutty P, Brar S, Ramirez A (2016) Enrichment of secondary wastewater sludge for production of hydrogen from crude glycerol and comparative evaluation of mono-, co-and mixed-culture systems. Int J Mol Sci 17(1):92

    Article  Google Scholar 

  102. Zhang K, Ren N, Guo C, Wang A, Cao G (2011) Effects of various pretreatment methods on mixed microflora to enhance biohydrogen production from corn stover hydrolysate. J Environ Sci 23(12):1929–1936

    Article  Google Scholar 

  103. Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99(1):59–67

    Article  Google Scholar 

  104. Yin Y, Wang J (2016) Optimization of hydrogen production by response surface methodology using γ-irradiated sludge as inoculum. Energy Fuel 30(5):4096–4103

    Article  Google Scholar 

  105. Singhal Y, Singh R (2014) Effect of microwave pretreatment of mixed culture on biohydrogen production from waste of sweet produced from Benincasa hispida. Int J Hydrogen Energy 39(14):7534–7540

    Article  Google Scholar 

  106. Song ZX, Wang ZY, Wu LY, Fan YT, Hou HW (2012) Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. Int J Hydrogen Energy 37(8):6554–6561

    Article  Google Scholar 

  107. Yin Y, Hu J, Wang J (2014) Gamma irradiation as a pretreatment method for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 39(25):13543–13549

    Article  Google Scholar 

  108. Yin Y, Yang G, Wang J (2017) Fermentative hydrogen production using disintegrated waste-activated sludge by low-frequency ultrasound pretreatment. Energy Fuel 32(1):574–580

    Article  Google Scholar 

  109. Guo WQ, Yang SS, Pang JW, Ding J, Zhou XJ, Feng XC, Zheng HS, Ren NQ (2013) Application of low frequency ultrasound to stimulate the bio-activity of activated sludge for use as an inoculum in enhanced hydrogen production. RSC Adv 3(44):21848–21855

    Article  Google Scholar 

  110. Goud RK, Mohan SV (2012) Regulating biohydrogen production from wastewater by applying organic load-shock: change in the microbial community structure and bio-electrochemical behavior over long-term operation. Int J Hydrogen Energy 37(23):17763–17777

    Article  Google Scholar 

  111. Jeong DY, Cho SK, Shin HS, Jung KW (2014) Inoculum preparation of anaerobic mixed cultures by electric field for dark fermentative hydrogen production. Int J Energy Res 38(15):2052–2056

    Article  Google Scholar 

  112. Zhu X, Xie X, Liao Q, Wang Y, Lee D (2011) Enhanced hydrogen production by Rhodopseudomonas palustris CQK 01 with ultra-sonication pretreatment in batch culture. Bioresour Technol 102(18):8696–8699

    Article  Google Scholar 

  113. Wang H, Fang M, Fang Z, Bu H (2010) Effects of sludge pretreatments and organic acids on hydrogen production by anaerobic fermentation. Bioresour Technol 101(22):8731–8735

    Article  Google Scholar 

  114. More TT, Ghangrekar MM (2010) Improving performance of microbial fuel cell with ultrasonication pre-treatment of mixed anaerobic inoculum sludge. Bioresour Technol 101(2):562–567

    Article  Google Scholar 

  115. Bansal SK, Singhal Y, Sreekrishnan TR, Singh R (2014) Effect of ultrasonic pretreatment on mixed microflora used for biohydrogen production from kitchen waste in a batch reactor. Adv Sci Lett 20(7-8):1248–1255

    Article  Google Scholar 

  116. Bakonyi P, Borza B, Orlovits K, Simon V, Nemestóthy N, Bélafi-Bakó K (2014) Fermentative hydrogen production by conventionally and unconventionally heat pretreated seed cultures: a comparative assessment. Int J Hydrogen Energy 39(11):5589–5596

    Article  Google Scholar 

  117. Karim A, Islam MA, Mohammad Faizal CK, Yousuf A, Howarth M, Dubey BN, Cheng CK, Rahman Khan MM (2018) Enhanced biohydrogen production from citrus wastewater using anaerobic sludge pretreated by an electroporation technique. Ind Eng Chem Res 58(2):573–580

    Article  Google Scholar 

  118. Dong L, Zhenhong Y, Yongming S, Longlong M (2010) Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW). Int J Hydrogen Energy 35(15):8234–8240

    Article  Google Scholar 

  119. Ray SG, Ghangrekar MM (2019) Comprehensive review on treatment of high-strength distillery wastewater in advanced physico-chemical and biological degradation pathways. Int J Environ Sci Technol 16(1):527–546

    Article  Google Scholar 

  120. Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_18

  121. Ioannou LA, Puma GL, Fatta-Kassinos D (2015) Treatment of winery wastewater by physicochemical, biological and advanced processes: a review. J Hazard Mater 286:343–368

    Article  Google Scholar 

  122. Strong PJ, Burgess JE (2008) Treatment methods for wine-related and distillery wastewaters: a review. Biorem J 12(2):70–87

    Article  Google Scholar 

  123. Justino CI, Pereira R, Freitas AC, Rocha-Santos TA, Panteleitchouk TS, Duarte AC (2012) Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view. Ecotoxicol 21(2):615–629

    Article  Google Scholar 

  124. Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445:385–396

    Article  Google Scholar 

  125. Arimi MM, Zhang Y, Götz G, Geißen SU (2015) Treatment of melanoidin wastewater by anaerobic digestion and coagulation. Environ Technol 36(19):2410–2418

    Article  Google Scholar 

  126. Senol A, Hasdemir İM, Hasdemir B, Kurdaş İ (2017) Adsorptive removal of biophenols from olive mill wastewaters (OMW) by activated carbon: mass transfer, equilibrium and kinetic studies. Asia-Pacific J Chem Eng 12(1):128–146

    Article  Google Scholar 

  127. Singh N, Petrinic I, Hélix-Nielsen C, Basu S, Balakrishnan M (2018) Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Res 130:271–280

    Article  Google Scholar 

  128. Tsioptsias C, Lionta G, Deligiannis A, Samaras P (2016) Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater. J Environ Manag 183:126–132

    Article  Google Scholar 

  129. Mohan SV, Mohanakrishna G, Ramanaiah SV, Sarma PN (2008) Simultaneous biohydrogen production and wastewater treatment in biofilm configured anaerobic periodic discontinuous batch reactor using distillery wastewater. Int J Hydrogen Energy 33(2):550–558

    Article  Google Scholar 

  130. Cota-Navarro CB, Carrillo-Reyes J, Davila-Vazquez G, Alatriste-Mondragón F, Razo-Flores E (2011) Continuous hydrogen and methane production in a two-stage cheese whey fermentation system. Water Sci Technol 64(2):367–374

    Article  Google Scholar 

  131. Cassano A, Conidi C, Giorno L, Drioli E (2013) Fractionation of olive mill wastewaters by membrane separation techniques. J Hazard Mater 248:185–193

    Article  Google Scholar 

  132. Thanapimmetha A, Srinophakun P, Amat S, Saisriyoot M (2017) Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process. J Environ Chem Eng 5(3):2305–2312

    Article  Google Scholar 

  133. Yang SS, Guo WQ, Cao GL, Zheng HS, Ren NQ (2012) Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour Technol 124:347–354

    Article  Google Scholar 

  134. Leano EP, Anceno AJ, Babel S (2012) Ultrasonic pretreatment of palm oil mill effluent: Impact on biohydrogen production, bioelectricity generation, and underlying microbial communities. Int J Hydrogen Energy 37(17):12241–12249

    Article  Google Scholar 

  135. Park H, Choo KH, Park HS, Choi J, Hoffmann MR (2013) Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production: influence of organic and particulate matter. Chem Eng J 215:802–810

    Article  Google Scholar 

  136. Banu JR, Anandan S, Kaliappan S, Yeom IT (2008) Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Sol Energy 82(9):812–819

    Article  Google Scholar 

  137. Domínguez CM, Quintanilla A, Casas JA, Rodriguez JJ (2014) Treatment of real winery wastewater by wet oxidation at mild temperature. Separation Purific Technol 129:121–128

    Article  Google Scholar 

  138. Tembhekar PD, Padoley KV, Mudliar SL, Mudliar SN (2015) Kinetics of wet air oxidation pretreatment and biodegradability enhancement of a complex industrial wastewater. J Environ Chem Eng 3(1):339–348

    Article  Google Scholar 

  139. Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    Article  Google Scholar 

  140. Eroğlu E, Eroğlu İ, Gündüz U, Yücel M (2009) Treatment of olive mill wastewater by different physicochemical methods and utilization of their liquid effluents for biological hydrogen production. Biomass Bioenergy 33(4):701–705

    Article  Google Scholar 

  141. David C, Arivazhagan M, Tuvakara F (2015) Decolorization of distillery spent wash effluent by electro oxidation (EC and EF) and Fenton processes: a comparative study. Ecotoxicol Environ Saf 121:142–148

    Article  Google Scholar 

  142. Nam JY, Yates MD, Zaybak Z, Logan BE (2014) Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater. Bioresour Technol 171:182–186

    Article  Google Scholar 

  143. Lafi WK, Shannak B, Al-Shannag M, Al-Anber Z, Al-Hasan M (2009) Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Sep Purif Technol 70(2):141–146

    Article  Google Scholar 

  144. Asaithambi P, Susree M, Saravanathamizhan R, Matheswaran M (2012) Ozone assisted electrocoagulation for the treatment of distillery effluent. Desalination 297:1–7

    Article  Google Scholar 

  145. Cardeña R, Moreno-Andrade I, Buitrón G (2018) Improvement of the bioelectrochemical hydrogen production from food waste fermentation effluent using a novel start-up strategy. J Chem Technol Biotechnol 93(3):878–886

    Article  Google Scholar 

  146. Rózsenberszki T, Koók L, Bakonyi P, Nemestóthy N, Logroño W, Pérez M, Urquizo G, Recalde C, Kurdi R, Sarkady A (2017) Municipal waste liquor treatment via bioelectrochemical and fermentation (H2+ CH4) processes: assessment of various technological sequences. Chemosphere 171:692–701

    Article  Google Scholar 

  147. Malik SN, Khan SM, Ghosh PC, Vaidya AN, Das S, Mudliar SN (2019) Nano catalytic ozonation of biomethanated distillery wastewater for biodegradability enhancement, color and toxicity reduction with biofuel production. Chemosphere 230:449–461

    Article  Google Scholar 

  148. Yodhor P, Choeisai P, Choeisai K, Kazuaki S (2017) Effect of pH on electrochemical treatment using platinum coated titanium mesh electrodes for post treatment of anaerobically treated sugarcane vinasses. Eng Appl Sci Res 44(1):39–42

    Google Scholar 

  149. Wang P, Lau IW, Fang HH (2001) Electrochemical oxidation of leachate pretreated in an upflow anaerobic sludge blanket reactor. Environ Technol 2(4):373–381

    Article  Google Scholar 

  150. Marone A, Ayala-Campos OR, Trably E, Carmona-Martínez AA, Moscoviz R, Latrille E, Steyer JP, Alcaraz-Gonzalez V, Bernet N (2017) Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. Int J Hydrogen Energy 42(3):1609–1621

    Article  Google Scholar 

  151. Ullery ML, Logan BE (2015) Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation effluent. Int J Hydrogen Energy 40(21):6782–6791

    Article  Google Scholar 

  152. Khani MR, Kuhestani H, Kalankesh LR, Kamarehei B, Rodríguez-Couto S, Baneshi MM, Shahamat YD (2019) Rapid and high purification of olive mill wastewater (OMV) with the combination electrocoagulation-catalytic sonoproxone processes. J Taiwan Inst Chem Eng 97:47–53

    Article  Google Scholar 

  153. Chookaew T, Prasertsan P, Ren ZJ (2014) Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. New Biotechnol 31(2):179–184

    Article  Google Scholar 

  154. Krishna SV, Kumar PK, Verma K, Bhagawan D, Himabindu V, Narasu ML, Singh R (2019) Enhancement of biohydrogen production from distillery spent wash effluent using electrocoagulation process. Energy Ecol Environ 4(4):160–165

    Article  Google Scholar 

  155. Varanasi JL, Roy S, Pandit S, Das D (2015) Improvement of energy recovery from cellobiose by thermophillic dark fermentative hydrogen production followed by microbial fuel cell. Int J Hydrogen Energy 40(26):8311–8321

    Article  Google Scholar 

  156. Badawy MI, Ghaly MY, Ali ME (2011) Photocatalytic hydrogen production over nanostructured mesoporous titania from olive mill wastewater. Desalination 267(2-3):250–255

    Article  Google Scholar 

  157. Chandra TS, Malik SN, Suvidha G, Padmere ML, Shanmugam P, Mudliar SN (2014) Wet air oxidation pretreatment of biomethanated distillery effluent: Mapping pretreatment efficiency in terms color, toxicity reduction and biogas generation. Bioresour Technol 158:135–140

    Article  Google Scholar 

  158. Davila JA, Machuca F, Marrianga N (2011) Treatment of vinasses by electrocoagulation–electroflotation using the Taguchi method. Electrochim Acta 56(22):7433–7436

    Article  Google Scholar 

  159. Peña M, Coca M, González G, Rioja R, Garcıa MT (2003) Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere 51(9):893–900

    Article  Google Scholar 

  160. Mohan SV, Mohanakrishna G, Velvizhi G, Babu VL, Sarma PN (2010) Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51(1-2):32–39

    Article  Google Scholar 

  161. Thakur C, Srivastava VC, Mall ID (2009) Electrochemical treatment of a distillery wastewater: parametric and residue disposal study. Chem Eng J 148(2-3):496–505

    Article  Google Scholar 

  162. Iboukhoulef H, Amrane A, Kadi H (2013) Microwave-enhanced Fenton-like system, Cu (II)/H2O2, for olive mill wastewater treatment. Environ Technol 34(7):853–860

    Article  Google Scholar 

  163. Sangave PC, Gogate PR, Pandit AB (2007) Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment. Chemosphere 68:32–41

    Article  Google Scholar 

  164. Seo YH, Sung M, Kim B, Oh YK, Kim DY, Han JI (2015) Ferric chloride based downstream process for microalgae based biodiesel production. Bioresour Technol 181:143–147

    Article  Google Scholar 

  165. Ninomiya K, Takamatsu H, Onishi A, Takahashi K, Shimizu N (2013) Sonocatalytic–Fenton reaction for enhanced OH radical generation and its application to lignin degradation. Ultrason Sonochem 20(4):1092–1097

    Article  Google Scholar 

  166. Xiong ZY, Qin YH, Ma JY, Yang L, Wu ZK, Wang TL, Wang WG, Wang CW (2017) Pretreatment of rice straw by ultrasound-assisted Fenton process. Bioresour Technol 227:408–411

    Article  Google Scholar 

  167. Sangave PC, Gogate PR, Pandit AB (2007) Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosphere 68(1):42–50

    Article  Google Scholar 

  168. Collado S, Laca A, Diaz M (2012) Decision criteria for the selection of wet oxidation and conventional biological treatment. J Environ Manag 102:65–70

    Article  Google Scholar 

  169. Cabrera Reina A, Santos-Juanes Jordá L, Casas López J, Maldonado Rubio M, García Sánchez J, Sánchez Pérez J (2015) Biological oxygen demand as a tool to predict membrane bioreactor best operating conditions for a photo-Fenton pretreated toxic wastewater. J Chem Technol Biotechnol 90(1):110–119

    Article  Google Scholar 

  170. Melero JA, Martínez F, Botas JA, Molina R, Pariente MI (2009) Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water Res 43(16):4010–4018

    Article  Google Scholar 

  171. Chatel G, Valange S, Behling R, Colmenares JC (2017) A combined approach using sonochemistry and photocatalysis: how to apply sonophotocatalysis for biomass conversion? Chem Cat Chem 9(14):2615–2621

    Google Scholar 

  172. Bagal MV, Gogate PR (2014) Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review. Ultrason Sonochem 21:1–14

    Article  Google Scholar 

  173. Cassano D, Zapata A, Brunetti G, Del Moro G, Di Iaconi C, Oller I, Malato S, Mascolo G (2011) Comparison of several combined/integrated biological-AOPs setups for the treatment of municipal landfill leachate: minimization of operating costs and effluent toxicity. Chem Eng J 172(1):250–257

    Article  Google Scholar 

  174. Prieto-Rodríguez L, Oller I, Klamerth N, Agüera A, Rodríguez EM, Malato S (2013) Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47(4):1521–1528

    Article  Google Scholar 

  175. Tripathi S, Tripathi B (2011) Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent. Bioresour Technol 102:6850–6856

    Article  Google Scholar 

  176. Kavitha S, Banu JR, IvinShaju CD, Kaliappan S, Yeom IT (2016) Fenton mediated ultrasonic disintegration of sludge biomass: biodegradability studies, energetic assessment, and its economic viability. Bioresour Technol 221:1–8

    Article  Google Scholar 

  177. Packyam GS, Kavitha S, Kumar SA (2015) Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas. Ultrason Sonochem 26:241–248

    Article  Google Scholar 

  178. Yeneneh AM, Chong S, Sen TK, Ang HM, Kayaalp A (2013) Effect of ultrasonic, microwave and combined microwave–ultrasonic pretreatment of municipal sludge on anaerobic digester performance. Water Air Soil Pollut 224(5):1559

    Article  Google Scholar 

  179. Hassan M, Umar M, Mamat T, Muhayodin F, Talha Z, Mehryar E, Ahmad F, Ding W, Zhao C (2017) Methane enhancement through sequential thermochemical and sonication pretreatment for corn stover with anaerobic sludge. Energy Fuel 31(6):6145–6153

    Article  Google Scholar 

  180. Wang YZ, Chen X, Wang Z, Zhao JF, Fan TT, Li DS, Wang JH (2012) Effect of low concentration alkali and ultrasound combination pretreatment on biogas production by stalk. In: Advanc Mater Res, Vol. 383. Trans Tech Publications, pp 3434–3437

  181. Yavuz Y (2007) EC and EF processes for the treatment of alcohol distillery wastewater. Sep Purif Technol 53:135–140

    Article  Google Scholar 

  182. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100(9):2562–2568

    Article  Google Scholar 

  183. Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52(10):3563–3580

    Article  Google Scholar 

  184. González-González LM, Correa DF, Ryan S, Jensen PD, Pratt S, Schenk PM (2018) Integrated biodiesel and biogas production from microalgae: towards a sustainable closed loop through nutrient recycling. Renew Sust Energy Rev 82:1137–1148

    Article  Google Scholar 

  185. Sivasankar P, Poongodi S, Seedevi P, Sivakumar M, Murugan T, Loganathan S (2019) Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. J Environ Manag 237:84–93

    Article  Google Scholar 

  186. Rivera I, Schröder U, Patil SA (2019) Microbial electrolysis for biohydrogen production: technical aspects and scale-up experiences. In Microb Electrochem Technol 871–898. Elsevier. https://doi.org/10.1016/B978-0-444-64052-9.00036-4

  187. Chandrasekhar K, Amulya K, Mohan SV (2015) Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation. Waste Manag 45:57–65

    Article  Google Scholar 

  188. Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:4673–4682

    Article  Google Scholar 

  189. Saratale GD, Saratale RG, Shahid MK, Zhen G, Kumar G, Shin HS, Choi YG, Kim SHA (2017) Comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere. 178:534–547

    Article  Google Scholar 

  190. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Bioenerg Biotechnol Advan 25:464–482

    Article  Google Scholar 

  191. Yu N, Xing D, Li W, Yang Y, Li Z, Li Y, Ren N (2017) Electricity and methane production from soybean edible oil refinery wastewater using microbial electrochemical systems. Int J Hydrogen Energy 42(1):96–102

    Article  Google Scholar 

  192. Sadhukhan J, Lloyd JR, Scott K, Premier GC, Eileen HY, Curtis T, Head IM (2016) A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renew Sust Energ Rev 56:116–132

    Article  Google Scholar 

  193. Varanasi JL, Veerubhotla R, Pandit S, Das D (2019) Biohydrogen production using microbial electrolysis cell: recent advances and future prospects. Microbial Electrochem Technol:843–869). Elsevier. https://doi.org/10.1016/B978-0-444-64052-9.00035-2

  194. Jadhav DA, Ray SG, Ghangrekar MM (2017) Third generation in bio-electrochemical system research-A systematic review on mechanisms for recovery of valuable by-products from wastewater. Renew Sust Energ Rev 76:1022–1031

    Article  Google Scholar 

  195. Yang N, Hafez H, Nakhla G (2015) Impact of volatile fatty acids on microbial electrolysis cell performance. Bioresour Technol 193:449–455

    Article  Google Scholar 

  196. Sonawane JM, Marsili E, Ghosh PC (2014) Treatment of domestic and distillery wastewater in high surface microbial fuel cells. Int J Hydrog Energy 39(36):21819–21827

    Article  Google Scholar 

  197. Hollenbeck PC, Ghosh D (2012) Improvements in fermentative biological hydrogen production through metabolic engineering. J Environ Manag 95:S360–S364

    Article  Google Scholar 

  198. Padoley KV, Saharan VK, Mudliar SN, Pandey RA, Pandit AB (2012) Cavitationally induced biodegradability enhancement of a distillery wastewater. J Hazard Mater 219:69–74

    Article  Google Scholar 

  199. Quéméneur M, Hamelin J, Barakat A, Steyer JP, Carrère H, Trably E (2012) Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int J Hydrogen Energy 37(4):3150–3159

    Article  Google Scholar 

  200. Wong YM, Juan JC, Ting A, Wu TY (2014) High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge. Energ 72:628–635

    Article  Google Scholar 

  201. Hay JX, Wu TY, Juan JC, Jahim JM (2015) Improved biohydrogen production and treatment of pulp and paper mill effluent through ultrasonication pretreatment of wastewater. Energy Convers Manag 106:576–583

    Article  Google Scholar 

  202. Hadavifar M, Younesi H, Zinatizadeh AA, Mahdad F, Li Q, Ghasemi Z (2016) Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries. J Environ Manag 170:28–36

    Article  Google Scholar 

  203. Siles JA, García-García I, Martín A, Martín MA (2011) Integrated ozonation and biomethanization treatments of vinasse derived from ethanol manufacturing. J Hazard Mater 188(1-3):247–253

    Article  Google Scholar 

  204. Cesare A, Naddeo V, Amodio V, Belgiorno V (2012) Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason Sonochem 19(3):596–600

    Article  Google Scholar 

  205. Premier GC, Kim JR, Massanet-Nicolau J, Kyazze G, Esteves SR, Penumathsa BK, Rodríguez J, Maddy J, Dinsdale RM, Guwy AJ (2013) Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew Energy 49:188–192

    Article  Google Scholar 

  206. Wu KJ, Chang CF, Chang JS (2007) Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Process Biochem 42(7):1165–1171

    Article  Google Scholar 

  207. Poggi-Varaldo HM, Munoz-Paez KM, Escamilla-Alvarado C, Robledo-Narváez PN, Ponce-Noyola MT, Calva-Calva G, Ríos-Leal E, Galíndez-Mayer J, Estrada-Vázquez C, Ortega-Clemente A, Rinderknecht-Seijas NF (2014) Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manag Res 32(5):353–365

    Article  Google Scholar 

  208. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17(6):990–1003

    Article  Google Scholar 

  209. Apollo S, Aoyi O (2016) Combined anaerobic digestion and photocatalytic treatment of distillery effluent in fluidized bed reactors focusing on energy conservation. Environ Technol 37(17):2243–2251

    Article  Google Scholar 

  210. Sharma Y, Li B (2010) Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). Int J Hydrogen Energy 35(8):3789–3797

    Article  Google Scholar 

  211. Thygesen A, Thomsen AB, Possemiers S, Verstraete W (2010) Integration of microbial electrolysis cells (MECs) in the biorefinery for production of ethanol, H 2 and phenolics. Waste Biomas Valor 1(1):9–20

    Article  Google Scholar 

  212. Mohanakrishna G, Mohan SV, Sarma PN (2010) Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrogen Energy 35(8):3440–3449

    Article  Google Scholar 

  213. Wardenier N, Liu Z, Nikiforov A, Van Hulle SW, Leys C (2019) Micropollutant elimination by O3, UV and plasma-based AOPs: An evaluation of treatment and energy costs. Chemosphere. 234:715–724

    Article  Google Scholar 

  214. Garcia-Costa AL, Zazo JA, Casas JA (2019) Microwave-assisted catalytic wet peroxide oxidation: Energy optimization. Sep Purif Technol 215:62–69

    Article  Google Scholar 

  215. Sahu OP, Gupta V, Chaudhari PK, Srivastava VC (2015) Electrochemical treatment of actual sugar industry wastewater using aluminum electrode. Int J Environ Sci Technol 12(11):3519–3530

    Article  Google Scholar 

  216. Patidar R, Srivastava VC (2020) Mechanistic insight into ultrasound-induced enhancement of electrochemical oxidation of ofloxacin: multi-response optimization and cost analysis. Chemosphere 257:127121. https://doi.org/10.1016/j.chemosphere.2020.127121

  217. Canizares P, Paz R, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manag 90(1):410–420

    Article  Google Scholar 

Download references

Acknowledgments

Africa Center of Excellence in Phytochemicals, Textile and Renewable Energy (ACEII-PTRE), Moi University and ASALI Project are acknowledged for the support in facilitating the researchers in undertaking this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. M’Arimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Mechanism of AOP Pretreatment of biohydrogen substrate given

2. Treatment of bioenergy effluent for color and COD by AOPs reviewed

3. Use of AOPs to co-produce H2 with different energy forms like MFC shown

4. Biorefinery production concept can be promoted by use of AOPs

5. AOPs can be used to enrich biohydrogen inoculum and treat excess sludge

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M’Arimi, M.M., Kiprop, A.K., Ramkat, R.C. et al. Progress in applications of advanced oxidation processes for promotion of biohydrogen production by fermentation processes. Biomass Conv. Bioref. 12, 6033–6057 (2022). https://doi.org/10.1007/s13399-020-01019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01019-y

Keywords

Navigation