Fate of nutrients during hydrothermal carbonization of biogenic municipal waste


The biogenic fraction of municipal solid waste is rich in various inorganic nutrients along with the organic content and imposes environmental threats in the absence of proper disposal techniques. To valorize the highly wet biogenic municipal waste (BMW), hydrothermal carbonization (HTC) can be an effective low-temperature treatment method. The knowledge on the distribution of the nutrients in the product phases after HTC can improve processing of BMW for minimizing environmental impacts and enabling nutrient recovery. This study aims to investigate the segregation of the inorganic nutrients (i.e. nitrogen, phosphorus, potassium, calcium, and sodium) in the hydrochar and liquid product from HTC of BMW. Experiments were performed by varying reaction temperature (190, 220, and 250 °C) and reaction time (30, 60, and 90 min) at a constant feed-to-water ratio to observe the effects of reaction conditions. Majority of the sodium (> 93%) and potassium (> 96%) were transferred to the liquid after HTC irrespective of the reaction condition. Calcium (> 50%), phosphorus (> 91%), and nitrogen (> 26%) remained mainly in the hydrochar. Multivariate analysis on the variables under consideration showed that the fate of phosphorus and nitrogen was affected by the reaction conditions remarkably. The fate of potassium, sodium, and calcium was found to be less dependent on the reaction conditions. By optimizing the reaction conditions, both liquid phase and hydrochar obtained from HTC of BMW could be potential sources of plant nutrients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Karak T, Bhagat RM, Bhattacharyya P (2012) Municipal solid waste generation, composition, and management: the world scenario. Crit Rev Environ Sci Technol 42:1509–1630. https://doi.org/10.1080/10643389.2011.569871

    Article  Google Scholar 

  2. 2.

    Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. The World Bank, Washington

    Google Scholar 

  3. 3.

    Huda ASNN, Mekhilef S, Ahsan A (2014) Biomass energy in Bangladesh: current status and prospects. Renew Sust Energ Rev 30:504–517. https://doi.org/10.1016/j.rser.2013.10.028

    Article  Google Scholar 

  4. 4.

    El-Fadel M, Findikakis AN, Leckie JO (1997) Environmental impacts of solid waste landfilling. J Environ Manag 50:1–25. https://doi.org/10.1006/jema.1995.0131

    Article  Google Scholar 

  5. 5.

    White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511. https://doi.org/10.1093/aob/mcg164

    Article  Google Scholar 

  6. 6.

    Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium - a functional plant nutrient. CRC Crit Rev Plant Sci 22:391–416. https://doi.org/10.1080/07352680390243495

    Article  Google Scholar 

  7. 7.

    Steen I (1998) Phosphorus availability in the 21st century : management of a non-renewable resource. Phosphorus Potassium 217:25–31

    Google Scholar 

  8. 8.

    Eriksson O, Carlsson Reich M, Frostell B, Björklund A, Assefa G, Sundqvist JO, Granath J, Baky A, Thyselius L (2005) Municipal solid waste management from a systems perspective. J Clean Prod 13:241–252. https://doi.org/10.1016/j.jclepro.2004.02.018

    Article  Google Scholar 

  9. 9.

    Kirtania K (2018) Thermochemical conversion processes for waste biorefinery. In: Waste Biorefinery. pp 129–156

  10. 10.

    Falk J, Skoglund N, Grimm A, Öhman M (2020) Fate of phosphorus in fixed bed combustion of biomass and sewage sludge. Energy Fuel 34:4587–4594. https://doi.org/10.1021/acs.energyfuels.9b03976

    Article  Google Scholar 

  11. 11.

    Zhang Q, Liu H, Li W, Xu J, Liang Q (2012) Behavior of phosphorus during co-gasification of sewage sludge and coal. Energy Fuel 26:2830–2836. https://doi.org/10.1021/ef300006d

    Article  Google Scholar 

  12. 12.

    Miles TR, Miles TR, Baxter LL et al (1996) Boiler deposits from firing biomass fuels. Biomass Bioenergy 10:125–138. https://doi.org/10.1016/0961-9534(95)00067-4

    Article  Google Scholar 

  13. 13.

    Johansen JM, Jakobsen JG, Frandsen FJ, Glarborg P (2011) Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass. Energy Fuel 25:4961–4971. https://doi.org/10.1021/ef201098n

    Article  Google Scholar 

  14. 14.

    Deng L, Ye J, Jin X, Zhu T, Che D (2017) Release and transformation of potassium during combustion of biomass. Energy Procedia 142:401–406. https://doi.org/10.1016/j.egypro.2017.12.063

    Article  Google Scholar 

  15. 15.

    Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177. https://doi.org/10.1002/bbb.198

    Article  Google Scholar 

  16. 16.

    Huang R, Fang C, Zhang B, Tang Y (2018) Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures. Environ Sci Technol 52:3016–3026. https://doi.org/10.1021/acs.est.7b05203

    Article  Google Scholar 

  17. 17.

    Cui X, Lu M, Khan MB, Lai C, Yang X, He Z, Chen G, Yan B (2020) Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production. Waste Manag 102:106–113. https://doi.org/10.1016/j.wasman.2019.10.034

    Article  Google Scholar 

  18. 18.

    Paneque M, De la Rosa JM, Kern J et al (2017) Hydrothermal carbonization and pyrolysis of sewage sludges: what happen to carbon and nitrogen? J Anal Appl Pyrolysis 128:314–323. https://doi.org/10.1016/j.jaap.2017.09.019

    Article  Google Scholar 

  19. 19.

    Schimmelpfennig S, Kammann C, Moser G, Grünhage L, Müller C (2015) Changes in macro- and micronutrient contents of grasses and forbs following Miscanthus x giganteus feedstock, hydrochar and biochar application to temperate grassland. Grass Forage Sci 70:582–599. https://doi.org/10.1111/gfs.12158

    Article  Google Scholar 

  20. 20.

    Funke A (2015) Fate of plant available nutrients during hydrothermal carbonization of digestate. Chemie-Ingenieur-Technik 87:1713–1719. https://doi.org/10.1002/cite.201400182

    Article  Google Scholar 

  21. 21.

    McGaughy K, Reza MT (2018) Recovery of macro and micro-nutrients by hydrothermal carbonization of septage. J Agric Food Chem 66:1854–1862. https://doi.org/10.1021/acs.jafc.7b05667

    Article  Google Scholar 

  22. 22.

    Idowu I, Li L, Flora JRV, Pellechia PJ, Darko SA, Ro KS, Berge ND (2017) Hydrothermal carbonization of food waste for nutrient recovery and reuse. Waste Manag 69:480–491. https://doi.org/10.1016/j.wasman.2017.08.051

    Article  Google Scholar 

  23. 23.

    Du Z, Hu B, Shi A et al (2012) Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour Technol 126:354–357. https://doi.org/10.1016/j.biortech.2012.09.062

    Article  Google Scholar 

  24. 24.

    Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81

    Article  Google Scholar 

  25. 25.

    Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization : fate of inorganics. Biomass Bioenergy 49:86–94. https://doi.org/10.1016/j.biombioe.2012.12.004

    Article  Google Scholar 

  26. 26.

    Bradstreet RB (1954) Kjeldahl method for organic nitrogen. Anal Chem 26:185–187. https://doi.org/10.1021/ac60085a028

    Article  Google Scholar 

  27. 27.

    Huang R, Tang Y (2015) Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environ Sci Technol 49:14466–14474. https://doi.org/10.1021/acs.est.5b04140

    Article  Google Scholar 

  28. 28.

    Huang R, Fang C, Lu X, Jiang R, Tang Y (2017) Transformation of phosphorus during (hydro)thermal treatments of solid biowastes: reaction mechanisms and implications for P reclamation and recycling. Environ Sci Technol 51:10284–10298. https://doi.org/10.1021/acs.est.7b02011

    Article  Google Scholar 

  29. 29.

    Saba A, Saha N, Williams K-C, Coronella CJ, Reza MT (2020) Binder-free torrefied biomass pellets: significance of torrefaction temperature and pelletization parameters by multivariate analysis. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00737-7

  30. 30.

    Smith AM, Singh S, Ross AB (2016) Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion behaviour of hydrochar. Fuel 169:135–145. https://doi.org/10.1016/j.fuel.2015.12.006

    Article  Google Scholar 

  31. 31.

    Zhuang X, Huang Y, Song Y, Zhan H, Yin X, Wu C (2017) The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment. Bioresour Technol 245:463–470. https://doi.org/10.1016/j.biortech.2017.08.195

    Article  Google Scholar 

  32. 32.

    Wang T, Zhai Y, Zhu Y, Peng C, Xu B, Wang T, Li C, Zeng G (2018) Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresour Technol 247:182–189. https://doi.org/10.1016/j.biortech.2017.09.076

    Article  Google Scholar 

  33. 33.

    He C, Giannis A, Wang JY (2013) Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Appl Energy 111:257–266. https://doi.org/10.1016/j.apenergy.2013.04.084

    Article  Google Scholar 

  34. 34.

    Zhao P, Shen Y, Ge S, Chen Z, Yoshikawa K (2014) Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl Energy 131:345–367. https://doi.org/10.1016/j.apenergy.2014.06.038

    Article  Google Scholar 

  35. 35.

    Zhu G, Zhu X, Xiao Z, Zhou R, Feng N, Niu Y (2015) A review of amino acids extraction from animal waste biomass and reducing sugars extraction from plant waste biomass by a clean method. Biomass Convers Biorefinery 5:309–320. https://doi.org/10.1007/s13399-014-0153-3

    Article  Google Scholar 

  36. 36.

    Heilmann SM, Molde JS, Timler JG, Wood BM, Mikula AL, Vozhdayev GV, Colosky EC, Spokas KA, Valentas KJ (2014) Phosphorus reclamation through hydrothermal carbonization of animal manures. Environ Sci Technol 48:10323–10329. https://doi.org/10.1021/es501872k

    Article  Google Scholar 

  37. 37.

    Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 35:2526–2533. https://doi.org/10.1016/j.biombioe.2011.02.022

    Article  Google Scholar 

  38. 38.

    Heilmann SM, Jader LR, Harned LA, Sadowsky MJ, Schendel FJ, Lefebvre PA, von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy 88:3286–3290. https://doi.org/10.1016/j.apenergy.2010.12.041

    Article  Google Scholar 

  39. 39.

    Zhang R, El-Mashad HM, Hartman K et al (2007) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98:929–935. https://doi.org/10.1016/j.biortech.2006.02.039

    Article  Google Scholar 

  40. 40.

    Huang R, Tang Y (2016) Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: insights from sequential extraction and P K-edge XANES. Water Res 100:439–447. https://doi.org/10.1016/j.watres.2016.05.029

    Article  Google Scholar 

  41. 41.

    Ekpo U, Ross AB, Camargo-Valero MA, Williams PT (2016) A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Bioresour Technol 200:951–960. https://doi.org/10.1016/j.biortech.2015.11.018

    Article  Google Scholar 

  42. 42.

    Häggström G, Fürsatz K, Kuba M, Skoglund N, Öhman M (2020) Fate of phosphorus in fluidized bed cocombustion of chicken litter with wheat straw and bark residues. Energy Fuel 34:1822–1829. https://doi.org/10.1021/acs.energyfuels.9b03652

    Article  Google Scholar 

  43. 43.

    Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. https://doi.org/10.1016/j.fuel.2011.09.030

    Article  Google Scholar 

  44. 44.

    Saddawi A, Jones JM, Williams A, Le Coeur C (2012) Commodity fuels from biomass through pretreatment and torrefaction: effects of mineral content on torrefied fuel characteristics and quality. Energy Fuel 26:6466–6474. https://doi.org/10.1021/ef2016649

    Article  Google Scholar 

  45. 45.

    Jenkins MB, Bexter LL, Miles TR Jr, Miles RT (1998) Combustion properties of biomass flash. Fuel Process Technol 54:17–46

    Article  Google Scholar 

  46. 46.

    Benavente V, Calabuig E, Fullana A (2015) Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J Anal Appl Pyrolysis 113:89–98. https://doi.org/10.1016/j.jaap.2014.11.004

    Article  Google Scholar 

  47. 47.

    Liu Z, Han G (2015) Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 158:159–165. https://doi.org/10.1016/j.fuel.2015.05.032

    Article  Google Scholar 

  48. 48.

    Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304. https://doi.org/10.1038/nbt0308-303

    Article  Google Scholar 

  49. 49.

    Zuur AF, Ieno EN, Smith GM (2007) Principal component analysis and redundancy analysis. In: Analysing ecological data. Springer, New York, pp 193–224

    Google Scholar 

Download references


The Energy and Power Research Council (EPRC) of the Government of the People’s Republic of Bangladesh funded this work under contract number EPRC/58-2018-001-01.

Author information



Corresponding author

Correspondence to Kawnish Kirtania.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


• Segregation of nutrients during HTC of biogenic municipal waste

• Evaluation of dependence of fate of nutrients on reaction conditions

• K (> 96 %), Na (> 93 %) remain mainly in the liquid and N, P, Ca in the hydrochar

• Fate of N, P is highly dependent on reaction conditions

• Correlation among the variables using principal component analysis

Electronic supplementary material


(PDF 102 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dima, S.S., Arnob, A., Salma, U. et al. Fate of nutrients during hydrothermal carbonization of biogenic municipal waste. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-01016-1

Download citation


  • Hydrothermal carbonization
  • Biogenic waste
  • Plant nutrient
  • Principal component analysis
  • Municipal waste valorization