Abstract
The aim of this research was to evaluate the technoeconomic prospect of hydrochar production through co-hydrothermal carbonization of coal waste (CW) and food waste (FW). A process flow diagram was developed that considered seven reactors, six pumps, and other necessary equipment for producing 49,192 kg/h hydrochar. Three different cases were considered for the economic analysis. Case II considered both CW and FW transportation cost while cases I and III considered only FW and only CW transportation, respectively. The economic analysis revealed the break-even costs to be $62.24 per ton for case I, $69.90 per ton for case II, and $60.26 per ton for case III. The fixed capital investment (FCI) was $11.4M for all the cases while total capital investment (TCI), working capital (WC), and manufacturing costs were higher for case II compared to cases I and III. A sensitivity analysis examined the effect of nine different variables on the break-even cost. The raw materials’ cost as well as their transportation costs significantly affected the corresponding break-even cost. Additionally, increasing the hydrochar production capacity has drastically decreased the break-even cost. However, the analysis also revealed that excessive increase of production capacity can have negative impact on the process economics.
This is a preview of subscription content, access via your institution.



References
- 1.
Varol M, Atimtay AT, Bay B, Olgun H (2010) Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochim Acta 510:195–201
- 2.
EIA. Annual Energy Review 2011. DOE/EIA-0384(2011)|. 2012 ed. U.S. Energy Information Administration, Washington, 2012. 2012
- 3.
D. Shaykheeva, M. Panasyuk, I. Malganova, I. Khairullin. World population estimates and projections: data and methods. Journal of Economics and Economic Education Research. 17 (2016)
- 4.
Saba A, Saha P, Reza MT (2017) Co-hydrothermal carbonization of coal-biomass blend: influence of temperature on solid fuel properties. Fuel Process Technol 167:711–720
- 5.
Chugh YP, Behum PT (2014) Coal waste management practices in the USA: an overview. International Journal of Coal Science & Technology 1:163–176
- 6.
U.D.o. Energy. Billion ton update: biomass supply for a bioenergy and bioproducts industry. OAK RIDGE NATIONAL LABORATORY2016
- 7.
A. Saba, K. McGaughy, T.M. Reza. Techno-economic assessment of co-hydrothermal carbonization of a coal-miscanthus blend. Energies. 12 (2019)
- 8.
Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2:71–106
- 9.
Reza MT (2013) Upgrading biomass by hydrothermal and chemical conditioning. University of Nevada Reno, Reno, Chemical and Materials Engineering
- 10.
Kruse A, Dahmen N (2015) Water—a magic solvent for biomass conversion. J Supercrit Fluids 96:36–45
- 11.
Mazumder S, Saha P (2020) M.T. Reza. Fuel Characteristics. Biomass Conversion and Biorefinery. in-press, Co-hydrothermal carbonization of coal waste and food waste
- 12.
M. Lucian, L. Fiori. Hydrothermal carbonization of waste biomass: process design, modeling, energy efficiency and cost analysis. Energies. 10 (2017)
- 13.
Gao L, Volpe M, Lucian M, Fiori L, Goldfarb JL (2019) Does hydrothermal carbonization as a biomass pretreatment reduce fuel segregation of coal-biomass blends during oxidation? Energy Convers Manag 181:93–104
- 14.
Lucian M, Volpe M, Gao L, Piro G, Goldfarb JL, Fiori L (2018) Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel. 233:257–268
- 15.
Lynam J, Reza MT, Yan W, Vásquez V, Coronella C (2014) Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conversion and Biorefinery.:1–9
- 16.
Mursito AT, Hirajima T, Sasaki K (2010) Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel. 89:635–641
- 17.
Mahmood R, Parshetti GK, Balasubramanian R (2016) Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil. Energy. 102:187–198
- 18.
McGaughy K, Toufiq Reza M (2017) Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conversion and Biorefinery
- 19.
Zhao PT, Shen YF, Ge SF, Yoshikawa K (2014) Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Convers Manag 78:815–821
- 20.
Kempegowda RS, Tran K-Q, Skreiberg Ø (2017) Techno-economic assessment of integrated hydrochar and high-grade activated carbon production for electricity generation and storage. Energy Procedia 120:341–348
- 21.
Saari J, Sermyagina E, Kaikko J, Vakkilainen E, Sergeev V (2016) Integration of hydrothermal carbonization and a CHP plant: part 2—operational and economic analysis. Energy. 113:574–585
- 22.
Li X-g, Ma B-g, Xu L, Hu Z-w, Wang X-g (2006) Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta 441:79–83
- 23.
Mazumder S, Saha P, Reza MT (2020) Co-hydrothermal carbonization of coal waste and food waste: fuel characteristics. Biomass Conversion and Biorefinery.
- 24.
R. Turton. Analysis, synthesis, and design of chemical processes. Prentice Hall2012
- 25.
T. Fout, A.K. Zoelle, D.; , M.W. Turner, N. M.; Kuehn, V. Shah, V. Chou, et al. Cost and performance baseline for fossil energy plants Volume 1a: bituminous coal (PC) and natural gas to electricity Revision 3. 2015
- 26.
R.D. Davis, C. Kinchin, J. Markham, E.C.D. Tan, L.M. Laurens, D. Sexton, et al. Process design and economics for the conversion of algal biomass to biofuels: algal biomass fractionation to lipid- and carbohydrate-derived fuel products. National Renewable Energy Laboratory2014
- 27.
EERE. Water and wastewater annual price escalation rates for selected cities across the United States. in: U.S.DOE, Office of Energy Efficiency & Rewnewable Energy 2017. 2017
- 28.
Hu H, Westover TL, Cherry R, Aston JE, Lacey JA, Thompson DN (2017) Process simulation and cost analysis for removing inorganics from wood chips using combined mechanical and chemical preprocessing. Bioenergy Research 10:237–247
- 29.
Prieto D, Swinnen N, Blanco L, Hermosilla D, Cauwenberg P, Blanco A, Negro C (2016) Drivers and economic aspects for the implementation of advanced wastewater treatment and water reuse in a PVC plant. Water Resources and Industry 14:26–30
- 30.
Lozowski D, Ondrey G, Jenkins S, Bailey M (2012) Chemical engineering plant cost index (CEPCI). Chem Eng 119:84
- 31.
Funke A, Reebs F, Kruse A (2013) Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Process Technol 115:261–269
- 32.
Mäkelä M, Benavente V, Fullana A (2015) Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties. Appl Energy 155:576–584
- 33.
Reza MT, Freitas A, Yang XK, Hiibel S, Lin HF, Coronella CJ (2016) Hydrothermal carbonization (HTC) of cow manure: carbon and nitrogen distributions in HTC products. Environ Prog Sustain Energy 35:1002–1011
- 34.
B. Wirth, G. Eberhardt, H. Lotze-Campen, B. Erlach, S. Rolinski, P. Rothe. Hydrothermal carbonization: influence of plant capacity, feedstock choice and location on product cost. Proceedings of 19th European Biomass Conference & Exhibition, 2011 Jun 6–10, Berlin, Germany2011. pp. 2001–10. 2011
Funding
This work was funded by the Ohio Coal Development Office (OCDO R-17-05) and NSF INFEWS 1856058.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Highlights
• Technoeconomic prospect of co-HTC of coal waste and food waste were evaluated.
• Break-even cost varied within $62.24, $69.90, and $60.26 per ton for three separate cases.
• Sensitivity analysis considered nine parameters to analyze the effect on break-even cost.
• Raw material purchasing and transportation cost were key factors in economic analysis.
Rights and permissions
About this article
Cite this article
Mazumder, S., Saha, P., McGaughy, K. et al. Technoeconomic analysis of co-hydrothermal carbonization of coal waste and food waste. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00817-8
Received:
Revised:
Accepted:
Published:
Keywords
- Food waste
- Coal waste
- Co-hydrothermal carbonization
- Technoeconomic analysis
- Sensitivity analysis