Rafati A, Tahvildari K, Nozari M (2019) Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO-NaOH nano catalyst. Energy Sources Part Recovery Util Environ Eff 41:1062–1074. https://doi.org/10.1080/15567036.2018.1539139
Article
Google Scholar
Somnuk K, Prasit T, Prateepchaikul G (2017) Effects of mixing technologies on continuous methyl ester production: comparison of using plug flow, static mixer, and ultrasound clamp. Energy Convers Manag 140:91–97. https://doi.org/10.1016/j.enconman.2017.02.066
Article
Google Scholar
Arumugam A, Ponnusami V (2019) Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: an overview. Renew Energy 131:459–471. https://doi.org/10.1016/j.renene.2018.07.059
Article
Google Scholar
Chauhan DS, Goswami G, Dineshbabu G et al (2019) Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00432-2
Ong HC, Milano J, Silitonga AS et al (2019) Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: optimization and characterization. J Clean Prod 219:183–198. https://doi.org/10.1016/j.jclepro.2019.02.048
Article
Google Scholar
Mahlia TMI, Syazmi ZAHS, Mofijur M et al (2020) Patent landscape review on biodiesel production: technology updates. Renew Sust Energ Rev 118:109526. https://doi.org/10.1016/j.rser.2019.109526
Article
Google Scholar
Dorado MP, Ballesteros E, Arnal JM et al (2003) Exhaust emissions from a diesel engine fueled with transesterified waste olive oil☆. Fuel 82:1311–1315. https://doi.org/10.1016/S0016-2361(03)00034-6
Article
Google Scholar
Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107. https://doi.org/10.1016/j.fuproc.2004.11.005
Article
Google Scholar
Goh BHH, Ong HC, Cheah MY et al (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sust Energ Rev 107:59–74. https://doi.org/10.1016/j.rser.2019.02.012
Article
Google Scholar
Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 2, Corrected Aufl. 2009. 2., korr. Nachdruck 2009 edition. Springer, Heidelberg; New York
Lee SW, Herage T, Young B (2004) Emission reduction potential from the combustion of soy methyl ester fuel blended with petroleum distillate fuel. Fuel 83:1607–1613. https://doi.org/10.1016/j.fuel.2004.02.001
Article
Google Scholar
Akubude VC, Nwaigwe KN, Dintwa E (2019) Production of biodiesel from microalgae via nanocatalyzed transesterification process: a review. Mater Sci Energy Technol 2:216–225. https://doi.org/10.1016/j.mset.2018.12.006
Article
Google Scholar
Abdollahi Asl M, Tahvildari K, Bigdeli T (2020) Eco-friendly synthesis of biodiesel from WCO by using electrolysis technique with graphite electrodes. Fuel 270:117582
Ong HC, Masjuki HH, Mahlia TMI et al (2014) Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 69:427–445. https://doi.org/10.1016/j.energy.2014.03.035
Article
Google Scholar
Silitonga AS, Mahlia TMI, Kusumo F et al (2019) Intensification of Reutealis trisperma biodiesel production using infrared radiation: simulation, optimisation and validation. Renew Energy 133:520–527. https://doi.org/10.1016/j.renene.2018.10.023
Article
Google Scholar
Tsavatopoulou VD, Aravantinou AF, Manariotis ID (2019) Biofuel conversion of Chlorococcum sp. and Scenedesmus sp. biomass by one- and two-step transesterification. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00541-y
Khan S, Siddique R, Sajjad W et al (2017) Biodiesel production from algae to overcome the energy crisis. HAYATI J Biosci 24:163–167. https://doi.org/10.1016/j.hjb.2017.10.003
Article
Google Scholar
Ferreira GF, Ríos Pinto LF, Carvalho PO, Coelho MB, Eberlin MN, Maciel Filho R, Fregolente LV (2019) Biomass and lipid characterization of microalgae genera Botryococcus, Chlorella, and Desmodesmus aiming high-value fatty acid production. Biomass Convers Biorefinery:1–15. https://doi.org/10.1007/s13399-019-00566-3
Mirón AS, García MCC, Gómez AC et al (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297. https://doi.org/10.1016/S1369-703X(03)00072-X
Article
Google Scholar
Molina Grima E, Fernández FGA, Garcı́a Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247. https://doi.org/10.1016/S0168-1656(99)00078-4
Yew GY, Lee SY, Show PL et al (2019) Recent advances in algae biodiesel production: from upstream cultivation to downstream processing. Bioresour Technol Rep 7:100227. https://doi.org/10.1016/j.biteb.2019.100227
Article
Google Scholar
Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. https://doi.org/10.1016/j.tibtech.2007.12.002
Article
Google Scholar
Fouchard S, Pruvost J, Degrenne B, Legrand J (2008) Investigation of H2 production using the green microalga Chlamydomonas reinhardtii in a fully controlled photobioreactor fitted with on-line gas analysis. Int J Hydrog Energy 33:3302–3310. https://doi.org/10.1016/j.ijhydene.2008.03.067
Article
Google Scholar
Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840. https://doi.org/10.1016/j.enconman.2009.03.001
Article
Google Scholar
Ahmad T, Danish M, Kale P et al (2019) Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renew Energy 139:1272–1280. https://doi.org/10.1016/j.renene.2019.03.036
Article
Google Scholar
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
Article
Google Scholar
Rabie AM, Shaban M, Abukhadra MR et al (2019) Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J Mol Liq 279:224–231. https://doi.org/10.1016/j.molliq.2019.01.096
Article
Google Scholar
Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321. https://doi.org/10.1016/S0168-1656(99)00083-8
Article
Google Scholar
Richmond A, Hu Q (2013) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley
Dantas J, Leal E, Cornejo DR et al (2020) Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4 synthesized in pilot-scale. Arab J Chem 13:3026–3042. https://doi.org/10.1016/j.arabjc.2018.08.012
Article
Google Scholar
Yongphet P, Wang J, Wang D, Mulbah C, Fan Z, Zhang W, Amaral PCS (2020) Optimization of operation conditions for biodiesel preparation from soybean oil using an electric field. Biomass Convers Biorefinery:1–11. https://doi.org/10.1007/s13399-019-00589-w
Silitonga AS, Masjuki HH, Mahlia TMI et al (2013) Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew Sust Energ Rev 22:346–360. https://doi.org/10.1016/j.rser.2013.01.055
Article
Google Scholar
Silitonga AS, Shamsuddin AH, Mahlia TMI et al (2020) Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renew Energy 146:1278–1291. https://doi.org/10.1016/j.renene.2019.07.065
Article
Google Scholar
Guan G, Kusakabe K (2009) Synthesis of biodiesel fuel using an electrolysis method. Chem Eng J 153:159–163. https://doi.org/10.1016/j.cej.2009.06.005
Article
Google Scholar
Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88:2685–2690. https://doi.org/10.1016/j.apenergy.2011.02.012
Article
Google Scholar
Tang S, Wang L, Zhang Y et al (2012) Study on preparation of Ca/Al/Fe3O4 magnetic composite solid catalyst and its application in biodiesel transesterification. Fuel Process Technol 95:84–89. https://doi.org/10.1016/j.fuproc.2011.11.022
Article
Google Scholar
Baskar G, Aberna Ebenezer Selvakumari I, Aiswarya R (2018) Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresour Technol 250:793–798. https://doi.org/10.1016/j.biortech.2017.12.010
Article
Google Scholar
Gardy J, Nourafkan E, Osatiashtiani A et al (2019) A core-shell SO4/mg-Al-Fe3O4 catalyst for biodiesel production. Appl Catal B Environ 259:118093. https://doi.org/10.1016/j.apcatb.2019.118093
Article
Google Scholar
Zhang Y, Shao D, Yan J et al (2016) The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi formations, Sichuan Basin, China. J Nat Gas Geosci 1:213–220. https://doi.org/10.1016/j.jnggs.2016.08.002
Article
Google Scholar
Vijayaprasath G, Murugan R, Asaithambi S et al (2016) Structural and magnetic behavior of Ni/Mn co-doped ZnO nanoparticles prepared by co-precipitation method. Ceram Int 42:2836–2845. https://doi.org/10.1016/j.ceramint.2015.11.019
Article
Google Scholar
Soufi MD, Ghobadian B, Najafi G et al (2017) Optimization of methyl ester production from waste cooking oil in a batch tri-orifice oscillatory baffled reactor. Fuel Process Technol 167:641–647. https://doi.org/10.1016/j.fuproc.2017.07.030
Article
Google Scholar
Ramos LA, Costa JS, Chierrito TPC et al (2016) Molecular modeling as a didactic tool in organic chemistry teaching on some abuse drugs thematic. J Educ Soc Behav Sci:1–12. https://doi.org/10.9734/BJESBS/2016/22165
Tabatabaei M, Aghbashlo M, Dehhaghi M et al (2019) Reactor technologies for biodiesel production and processing: a review. Prog Energy Combust Sci 74:239–303. https://doi.org/10.1016/j.pecs.2019.06.001
Article
Google Scholar
Qiao B-Q, Zhou D, Li G, Yin JZ, Xue S, Liu J (2017) Process enhancement of supercritical methanol biodiesel production by packing beds. Bioresour Technol 228:298–304. https://doi.org/10.1016/j.biortech.2016.12.085
Article
Google Scholar