Skip to main content

Advertisement

Log in

Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Vinasse the main residue of bioethanol production can be used as a substrate in microbiological processes to obtain value-added products. However, it is necessary to use a microbial consortium with high capacity to produce hydrogen (H2) and volatile fatty acids (VFA). There is no consensus on the best inoculum pretreatment to eliminate hydrogen-consuming bacteria. Thus, the present study evaluated the influence of three methods of heat pretreatment of the inoculum: T1 = 90 °C/10 min; T2 = 105 °C/120 min; T3 = 121 °C/20 min for the production of H2 and VFA using vinasse as substrate. The effect of the concentration of vinasse and the initial pH (5, 6 and 7) were also evaluated. The highest hydrogen production (821.34 mL) and yield (4.75 mmol H2 g−1 COD) was obtained using undiluted vinasse at pH 6 and T1 pretreatment. The highest number of copies of the Fe-hydrogenase genes confirms the higher H2 production. The presence of Clostridium and facultative anaerobic microorganisms Bacillus and Enterobacter in the microbial consortia were confirmed by isolation and PCR-DGGE. The highest production of VFA was obtained at pH 7 and T3 pretreatment. This study showed that dark fermentation could be driven by the inoculum pretreatment and pH selecting different process either for the production of H2 or VFA from vinasse in natura, without addition of supplements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. CONAB, National Supply Company (Companhia Nacional de Abastecimento). https://www.conab.gov.br. Accessed 25 August 2019

  2. Sydney EB, Larroche C, Novak AC, Nouaille R, Sarma SJ, Brar SK, Letti LAJ, Soccol VT, Soccol CR (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour Technol 159:380–386. https://doi.org/10.1016/j.biortech.2014.02.042

    Article  Google Scholar 

  3. Lazaro CZ, Perna V, Etchebehere C, Varesche MBA (2014) Sugarcane vinasse as substrate for fermentative hydrogen production: the effects of temperature and substrate concentration. Int J Hydrog Energy 39:6407–6418. https://doi.org/10.1016/j.ijhydene.2014.02.058

    Article  Google Scholar 

  4. Salomon KR, Lora EES (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107. https://doi.org/10.1016/j.biombioe.2009.03.001

    Article  Google Scholar 

  5. Cheong DY, Hansen CL (2006) Bacterial stress enrichment enchances anaerobic hydrogen production in cattle manure sludge. Appl Microbiol Biotechnol 72:635–643. https://doi.org/10.1007/s00253-006-0313-x

    Article  Google Scholar 

  6. Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z (2018) Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour Technol 268:773–786. https://doi.org/10.1016/j.biortech.2018.07.042

    Article  Google Scholar 

  7. Strazzera G, Battista F, Garcia NH, Frison N, Bolzonella D (2018) Volatile fatty acids production from food wastes for biorefinery platforms: a review. J Environ Manag 226:278–288. https://doi.org/10.1016/j.jenvman.2018.08.039

    Article  Google Scholar 

  8. Lu Y, Slater FR, Mohd-Zaki Z, Pratt S, Batstone DJ (2011) Impact of operating history on mixed culture fermentation microbial ecology and product mixture. Water Sci Technol 64:760–765. https://doi.org/10.2166/wst.2011.699

    Article  Google Scholar 

  9. Maintinguer SI, Sakamoto IK, Adorno MAT, Varesche MBA (2015) Bacterial diversity from environmental sample applied to bio-hydrogen production. Int J Hydrog Energy 40:3180–3190. https://doi.org/10.1016/j.ijhydene.2014.12.118

    Article  Google Scholar 

  10. Sivagurunathan P, Sen B, Lin CY (2014) Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition. J Biosci Bioeng 117:222–228. https://doi.org/10.1016/j.jbiosc.2013.07.015

    Article  Google Scholar 

  11. Maintinguer SI, Fernandes BS, Duart ICC, Saavedra NK, Adorno MAT, Varesche MBA (2008) Fermentative hydrogen production by microbial consortium. Int J Hydrog Energy 33:4309–4317. https://doi.org/10.1016/j.ijhydene.2008.06.053

    Article  Google Scholar 

  12. Rossi DM, Costa JB, Souza EA, Peralba MCR, Samios D, Ayub MAZ (2011) Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrog Energy 36:4814–4819. https://doi.org/10.1016/j.ijhydene.2011.01.005

    Article  Google Scholar 

  13. Wang A, Gao L, Ren N, Xu J, Liu C, Lee DJ (2010) Enrichment strategy to select functional consortium from mixed cultures: consortium from rumen liquor for simultaneous cellulose degradation and hydrogen production. Int J Hydrog Energy 35:13413–13418. https://doi.org/10.1016/j.ijhydene.2009.11.117

    Article  Google Scholar 

  14. Motte JC, Trably E, Hamelin J, Escudié R, Bonnafous A, Steyer JP, Bernet N, Delgenès JP, Dumas C (2014) Total solid content drives hydrogen production through microbial selection during thermophilic fermentation. Bioresour Technol 166:610–615. https://doi.org/10.1016/j.biortech.2014.05.078

    Article  Google Scholar 

  15. Noori M, Saady C (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38:13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122

    Article  Google Scholar 

  16. Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29:685–695. https://doi.org/10.1007/s10529-006-9299-9

    Article  Google Scholar 

  17. Ren NQ, Guo WQ, Wang XJ, Xiang WS, Liu BF, Wang XZ, Ding J, Chen ZB (2008) Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int J Hydrog Energy 33:4318–4324. https://doi.org/10.1016/j.ijhydene.2008.06.003

    Article  Google Scholar 

  18. Wang J, Yin Y (2017) Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures. Int J Hydrog Energy 42:4804–4823. https://doi.org/10.1016/j.ijhydene.2017.01.135

    Article  Google Scholar 

  19. Kim DH, Han SK, Kim SH, Shin HS (2006) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrog Energy 31:2158–2169. https://doi.org/10.1016/j.ijhydene.2006.02.012

    Article  Google Scholar 

  20. Bakonyi P, Borza B, Orlovits K, Simon V, Nemestothy N, Belafi-Bako K (2014) Fermentative hydrogen production by conventionally and unconventionally heat pretreated seed cultures: a comparative assessment. Int J Hydrog Energy 39:5589–5596. https://doi.org/10.1016/j.ijhydene.2014.01.110

    Article  Google Scholar 

  21. Wang J, Wan W (2008) Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 33:2934–2941. https://doi.org/10.1016/j.ijhydene.2008.03.048

    Article  Google Scholar 

  22. Phowan P, Danvirutai P (2014) Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: effects of initial pH, substrate and biomass concentrations. Biomass Bioernergy 64:1–10. https://doi.org/10.1016/j.biombioe.2014.03.057

    Article  Google Scholar 

  23. Khanal SK, Chen WH, Li L, Sung S (2004) Biological hydrogen production: efects of pH and intermediate products. Int J Hydrog Energy 29:1123–1131. https://doi.org/10.1016/j.ijhydene.2003.11.002

    Article  Google Scholar 

  24. APHA (2005) Standart methods for the examination of water and wastewater. 21 st ed., Washington, DC

  25. Dubois MKA, Gilles JK, Hamilton PA, Rebers SF (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  Google Scholar 

  26. Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586

    Article  Google Scholar 

  27. Nielsen AT, Liu WT, Filipe C, Grady L, Molin S, Stahl DA (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258

    Article  Google Scholar 

  28. Poleto L, Souza P, Magrini FE, Beal LL, Torres APR, Souza MP, Laurino JP, Paesi S (2016) Selection and identification of microorganisms present in the treatment of wastewater and activated sludge to produce biohydrogen from glycerol. Int J Hydrog Energy 41:4374–4381. https://doi.org/10.1016/j.ijhydene.2015.06.051

    Article  Google Scholar 

  29. Fang H, Zhang T, Li C (2006) Characterization of Fe-hydrogenase genes diversity and hydrogen-producing population in an acidophilic sludge. J Biotechnol 126:357–364. https://doi.org/10.1016/j.jbiotec.2006.04.023

    Article  Google Scholar 

  30. Perna V, Castelló E, Wenzel J, Zampol C, Fontes Lima DM, Borzacconi L, Varesche MBA, Zaiat M, Etchebehere C (2013) Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. Int J Hydrog Energy 38:54–62. https://doi.org/10.1016/j.ijhydene.2012.10.022

    Article  Google Scholar 

  31. Ramos LR, Silva EL (2018) Continuous hydrogen production from cofermentation of sugarcane vinasse and cheese whey in a thermophilic anaerobic fluidized bed reactor. Int J Hydrog Energy 43:13081–13089. https://doi.org/10.1016/j.ijhydene.2018.05.070

    Article  Google Scholar 

  32. Liu G, Shen J (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 98:251–256. https://doi.org/10.1016/S1389-1723(04)00277-4

    Article  Google Scholar 

  33. Fonseca BC, Guazzaroni ME, Reginatto V (2016) Fermentative production of H2 from different concentrations of galactose by the new isolate Clostridium beijerinckii Br21. Int J Hydrog Energy 41:21109–21120. https://doi.org/10.1016/j.ijhydene.2016.09.110

    Article  Google Scholar 

  34. Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015) Mesophilic hydrogen production in acidogenic packed-bed reactors (APBR) using raw sugarcane vinasse as substrate. Anaerobe 34:94–105. https://doi.org/10.1016/j.anaerobe.2015.04.008

    Article  Google Scholar 

  35. Zhang T, Liu H, Fang HHP (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manag 69:149–156. https://doi.org/10.1016/S0301-4797(03)00141-5

    Article  Google Scholar 

  36. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34:799–811. https://doi.org/10.1016/j.ijhydene.2008.11.015

    Article  Google Scholar 

  37. Fernandes BS, Peixoto G, Albrecht FR, Saavedra del Aguila NK, Zaiat M (2010) Potential to produce biohydrogen from various wastewaters. Energy Sustain Dev 14:143–148. https://doi.org/10.1016/j.esd.2010.03.004

    Article  Google Scholar 

  38. Albanez R, Lovato G, Zaiat M, Ratusznei SM, Rodrigues JAD (2016) Optimization, metabolic pathways modeling and scale-up estimative of an AnSBBR applied to biohydrogen production by co-digestion of vinasse and molasses. Int J Hydrog Energy 41:20473–20484. https://doi.org/10.1016/j.ijhydene.2016.08.145

    Article  Google Scholar 

  39. Kiyuna LSM, Fuess LT, Zaiat M (2017) Unraveling the influence of the COD/sulfate ratio on organic matter removal and methane production from the biodigestion of sugarcane vinasse. Bioresour Technol 232:103–112. https://doi.org/10.1016/j.biortech.2017.02.028

    Article  Google Scholar 

  40. Torquato LDM, Pachiega R, Crespi MS, Nespeca MG, Oliveira JE, Maintinguer SI (2017) Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge. Waste Manag 59:181–193. https://doi.org/10.1016/j.wasman.2016.10.047

    Article  Google Scholar 

  41. Peixoto G, Pantoja-Filho JLR, Agnelli JAB, Barboza M, Zaiat M (2012) Hydrogen and methane production, energy recovery, and organic matter removal from effluents in a two-stage fermentative process. Appl Biochem Biotechnol 168:651–671. https://doi.org/10.1007/s12010-012-9807-4

    Article  Google Scholar 

  42. Marone A, Ayala-Campos OR, Trably E, Carmona-Martínez AA, Moscoviz R, Latrille E, Steyer JP, Alcaraz-Gonzalez V, Bernet N (2017) Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. Int J Hydrog Energy 42:1609–1621. https://doi.org/10.1016/j.ijhydene.2016.09.166

    Article  Google Scholar 

  43. Guo L, Li XM, Bo X, Yang Q, Zeng GM, Liao DX, Liu JJ (2008) Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour Technol 99:3651–3658. https://doi.org/10.1016/j.biortech.2007.07.026

    Article  Google Scholar 

  44. Mu Y, Yu HQ, Wang G (2007) Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzym Microb Technol 40:947–953. https://doi.org/10.1016/j.enzmictec.2006.07.033

    Article  Google Scholar 

  45. Rafieenia R, Lavagnolo MC, Pivato A (2018) Pretreatment technologies for dark fermentative hydrogen production: current advances and future directions. Waste Manag 71:734–748. https://doi.org/10.1016/j.wasman.2017.05.024

    Article  Google Scholar 

  46. Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, Reid G (2008) The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrogen Hydrogen Energy 33:4064–4073. https://doi.org/10.1016/j.ijhydene.2008.05.069

    Article  Google Scholar 

  47. Alibardi L, Favaro L, Lavagnolo MC, Basaglia M, Casella S (2012) Effects of heat treatment on microbial communities of granular sludge for biological hydrogen production. Water Sci Technol 66:1483–1490. https://doi.org/10.2166/wst.2012.336

    Article  Google Scholar 

  48. Khan MA, Ngo HH, Guo W, Chang SW, Nguyen DD, Varjani S, Liu Y, Deng L, Cheng C (2019) Selective production of volatile fatty acids at different pH in an anaerobic membrane bioreactor. Bioresour Technol 283:120–128. https://doi.org/10.1016/j.biortech.2019.03.073

    Article  Google Scholar 

  49. Niz MYK, Etchelet I, Fuentes L, Etchebehere C, Zaiat M (2019) Extreme thermophilic condition: an alternative for long-term biohydrogen production from sugarcane vinasse. Int J Hydrog Energy 44:22876–22887. https://doi.org/10.1016/j.ijhydene.2019.07.015

    Article  Google Scholar 

  50. Chen YG, Jiang S, Yuan HY, Zhou Q, Gu GW (2007) Hydrolysis and acidification of waste activated sludge at different pHs. Water Res 41:683–689. https://doi.org/10.1007/s00253-012-4378-4

    Article  Google Scholar 

  51. Chaganti SR, Pendyala B, Lalman JA, Veeravalli SS, Heath DD (2013) Influence of linoleic acid, pH and HRT on anaerobic microbial populations and metabolic shifts in ASBRs during dark hydrogen fermentation of lignocellulosic sugars. Int J Hydrog Energy 38:2212–2220. https://doi.org/10.1016/j.ijhydene.2012.11.137

    Article  Google Scholar 

  52. Nandi R, Segunpta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84. https://doi.org/10.1080/10408419891294181

    Article  Google Scholar 

  53. Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119. https://doi.org/10.1016/j.biortech.2006.11.048

    Article  Google Scholar 

  54. Morgan-Sagastume F, Pratt S, Karlsson A, Cirne D, Lant P, Werker A (2011) Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresour Technol 102:3089–3097. https://doi.org/10.1016/j.biortech.2010.10.054

    Article  Google Scholar 

  55. Fu Z, Holtzapple MT (2010) Anaerobic mixed-culture fermentation of aqueous ammonia-treated sugarcane bagasse in consolidated bioprocessing. Biotechnol Bioeng 106:216–227. https://doi.org/10.1002/bit.22679

    Article  Google Scholar 

  56. Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol 100:3403–3409. https://doi.org/10.1016/j.biortech.2009.02.032

    Article  Google Scholar 

  57. Etchebehere C, Castelló E, Wenzel J, Anzola-Rojas MPL, Buitrón G, Cabrol L, Carminato VM, Carrillo-Reyes J, Cisneros-Pérez C, Fuentes L, Moreno-Andrade I, Razo-Flores E, Filippi GR, Tapia-Venegas E, Toledo-Alarcón J, Zaiat M (2016) Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing. Appl Microbiol Biotechnol 100:3371–3384. https://doi.org/10.1007/s00253-016-7325-y

    Article  Google Scholar 

  58. Hu C, Giannis A, Chen C, Wang J (2014) Evaluation of hydrogen producing cultures using pretreated food waste. Int J Hydrog Energy 39:19337–19342. https://doi.org/10.1016/j.ijhydene.2014.06.056

    Article  Google Scholar 

  59. Yang Z, Guo R, Xu X, Wang L, Dai M (2016) Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia. Bioresour Technol 216:471–477. https://doi.org/10.1016/j.biortech.2016.05.062

    Article  Google Scholar 

  60. Ren NQ, Chua H, Chan SH, Tsang YF, Wang YJ, Sin N (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol 98:1774–1780. https://doi.org/10.1016/j.biortech.2006.07.026

    Article  Google Scholar 

  61. Li WW, Yu HQ (2011) Physicochemical characteristics of anaerobic H2-producing granular sludge. Bioresour Technol 102:8653–8660. https://doi.org/10.1016/j.biortech.2011.02.110

    Article  Google Scholar 

  62. Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS (2006) Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 93:934–946. https://doi.org/10.1002/bit.20800

    Article  Google Scholar 

  63. Hung CH, Cheng CH, Guan DW, Wang ST, Hsu SC, Liang CM, Lin CY (2011) Interactions between Clostridium sp. and other facultative anaerobes in a self-formed granular sludge hydrogen-producing bioreactor. Int J Hydrog Energy 36:8704–8711. https://doi.org/10.1016/j.ijhydene.2010.06.010

    Article  Google Scholar 

  64. Zhao X, Xing D, L. Zhang, Ren N (2010) Characterization and overexpression of a [FeFe]-hydrogenase gene of a novel hydrogen-producing bacterium Ethanoligenens harbinense. Int J Hydrog Energy 35:9598–9602. https://doi.org/10.1016/j.ijhydene.2010.06.098

  65. Castelló E, Braga L, Fuentes L, Etchebehere C (2018) Possible causes for the instability in the H2 production from cheese whey in a CSTR. Int J Hydrog Energy 43:2654–2665. https://doi.org/10.1016/j.ijhydene.2017.12.104

    Article  Google Scholar 

  66. Eder AS, Magrini FE, Spengler A, Silva JT, Beal LL, Paesi S (2020) Comparison of hydrogen and volatile fatty acid production by Bacillus cereus, Enterococcus faecalis and Enterobacter aerogenes singly, in co-cultures or in the bioaugmentation of microbial consortium from sugarcane vinasse. Environ Technol Inno 18:10063. https://doi.org/10.1016/j.eti.2020.100638

  67. Shah AT, Favaro L, Alibardi L, Cagnin L, Sandon A, Cossu R, Casella S, Basaglia M (2016) Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste. Appl Energy 176:116–124. https://doi.org/10.1016/j.apenergy.2016.05.054

    Article  Google Scholar 

  68. Iyer P, Bruns MA, Zhang HS, Van Ginkel S, Logan BE (2004) H2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66:166–173. https://doi.org/10.1007/s00253-004-1666-7

    Article  Google Scholar 

  69. Fuentes L, Braga L, Castelló E, Etchebehere C (2018) Work scheme to isolate the different micro-organisms found in hydrogen-producing reactors: a study of effectiveness by pyrosequencing analysis. J Appl Microbiol 125:96–110. https://doi.org/10.1111/jam.13763

    Article  Google Scholar 

  70. Harun I, Jahim JM, Anuar N, Hassan O (2012) Hydrogen production performance by Enterobacter cloacae KBH3 isolated from termite guts. Int J Hydrog Energy 37:15052–15061. https://doi.org/10.1016/j.ijhydene.2012.07.101

    Article  Google Scholar 

  71. Sun L, Huang A, Gu W, Ma Y, Zhu D, Wang G (2015) Hydrogen production by Enterobacter cloacae isolated from sugar refinery sludge. Int J Hydrog Energy 40:1402–1407. https://doi.org/10.1016/j.ijhydene.2014.11.121

    Article  Google Scholar 

  72. Buitrón G, Carvajal C (2010) Biohydrogen production from tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 101:9071–9077. https://doi.org/10.1016/j.biortech.2010.06.127

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Petrobras for their financial support and the University of Caxias do Sul and, Institute of Biological Research Clemente Estable, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flaviane Eva Magrini.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The increase in vinasse concentration positively affected the hydrogen production.

• The pretreatment at 90 °C–10 min was the better to produce hydrogen at pH 6.

• The pretreatment at 121 °C–20 min was the most efficient to produce VFA at pH 7.

Clostridium, Bacillus, and Enterobacter contributed to increasing the H2 production.

• The pretreatments and pH influenced on the conversion of the vinasse in natura.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magrini, F.E., de Almeida, G.M., da Maia Soares, D. et al. Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse. Biomass Conv. Bioref. 11, 2443–2456 (2021). https://doi.org/10.1007/s13399-020-00687-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00687-0

Keywords

Navigation