A biorefinery based on the biomechanical configuration of the digestive system of a ruminant for ABE production: a consolidated bioprocessing approach

Abstract

Ruminants are capable of transforming biomass into useful products; therefore, they can be considered as consolidated processing units. A conceptual design is presented for a biorefinery scheme, imitating a ruminant, under a consolidated bioprocessing (CBP) approach for ABE (acetone-butanol-ethanol) fermentation. The biorefinery was simulated by using SuperPro Designer® v8.5 software. Wheat straw (WS) was used as feedstock. A sensitivity analysis of the impact of the butanol output concentration of the ABE fermentation reactor on butanol total production cost (TPC) was made. Butanol concentrations (9, 15, and 19 g/L) and a hydraulic retention time (HRT) of 72 h were fixed on previous studies using specific species of Clostridium. Using the best scenario, a sensitive analysis of TPC was explored for different feedstock capacities of 400, 600, 800, 1000, 1400, 1800, and 2200 MT DB/day. The results showed a TPC of US$0.98/kg for the best-case scenario (2200 MT of WS/day; 19 g of butanol per L; HRT of 72 h), which is competitive with current gasoline prices in Mexico. The biorefinery produced all of its steam and electricity requirements by means of the co-production of the hydrogen and methane that were used in the co-generation stage, along with lignin. In addition, the production of butanol against electricity and its impact on the economy of the process was compared. Finally, by increasing the production of methane for the production of electricity, the economic parameters were negatively affected for all scenarios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Sanchez A, Sevilla-Güitrón V, Magaña G, Gutierrez L (2013) Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel 113:165–179. https://doi.org/10.1016/j.fuel.2013.05.034

    Article  Google Scholar 

  2. 2.

    Hernández C, Escamilla Alvarado C, Sánchez A, Alarcón E, Ziarelli F, Musule R, Valdez-Vazquez I (2019) Wheat straw, corn stover, sugarcane, and Agave biomasses: chemical properties, availability, and cellulosic-bioethanol production potential in Mexico. Biofuels Bioprod Bioref 13:1143–1159. https://doi.org/10.1002/bbb.2017

    Article  Google Scholar 

  3. 3.

    Mathimani T, Pugazhendhi A (2019) Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal Agric Biotechnol 17:326–330. https://doi.org/10.1016/j.bcab.2018.12.007

    Article  Google Scholar 

  4. 4.

    Chandel AK, Garlapati VK, Singh AK, Fernandez-Antunes FA, Silverio da Silva S (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381. https://doi.org/10.1016/j.biortech.2018.06.004

    Article  Google Scholar 

  5. 5.

    Molina-Guerrero CE, de la Rosa G, Castillo-Michel H, Sanchez A, García-Castañeda C, Hernandez-Rayas A, Valdez-Vazquez I, Suarez-Vazquez S (2018) Physicochemical characterization of wheat straw during a continuous pretreatment process. Chem Eng Technol 41:1350. https://doi.org/10.1002/ceat.201800107

    Article  Google Scholar 

  6. 6.

    Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583. https://doi.org/10.1016/j.copbio.2005.08.009

    Article  Google Scholar 

  7. 7.

    Chen L, Du JL, Zhan YJ, et al (2018) Consolidated bioprocessing for cellulosic ethanol conversion by cellulase–xylanase cell-surfaced yeast consortium. Prep Biochem Biotechnol 0:1–9. https://doi.org/10.1080/10826068.2018.1487846

    Article  Google Scholar 

  8. 8.

    Weimer PJ, Russell JB, Muck RE (2009) Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresour Technol 100:5323–5331. https://doi.org/10.1016/j.biortech.2009.04.075

    Article  Google Scholar 

  9. 9.

    Ranjan A, Moholkar VS (2012) Biobutanol: science, engineering, and economics. Int J Energy Res 36:277–323. https://doi.org/10.1002/er.1948

    Article  Google Scholar 

  10. 10.

    Ramey DE (2007) Butanol: the other alternative fuel. Procs. NABC´s 19th Annual Meeting:Agricultural Biofuels: Technology, Sustainability and Profitability, pp 137–147

  11. 11.

    Zondervan E, Nawaz M, de Haan AB, Woodley JM, Gani R (2011) Optimal design of a multi-product biorefinery system. Comput Chem Eng 35:1752–1766. https://doi.org/10.1016/j.compchemeng.2011.01.042

    Article  Google Scholar 

  12. 12.

    Jackowiak D, Bassard D, Pauss A, Ribeiro T (2011) Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour Technol 102:6750–6756. https://doi.org/10.1016/j.biortech.2011.03.107

    Article  Google Scholar 

  13. 13.

    Lara-Vázquez AR, Sánchez A, Valdez-Vazquez I (2014) Hydration treatments increase the biodegradability of native wheat straw for hydrogen production by a microbial consortium. Int J Hydrog Energy 39:19899–19904. https://doi.org/10.1016/j.ijhydene.2014.09.155

    Article  Google Scholar 

  14. 14.

    Sanchez A, Hernández-Sánchez P, Puente R (2019) Hydration of lignocellulosic biomass. Modelling and experimental validation. Industrial Crops and Products 131:70-77. https://doi.org/10.1016/j.indcrop.2019.01.029

    Article  Google Scholar 

  15. 15.

    Lara-Vázquez AR, Quiroz-Figueroa FR, Sánchez A, Valdez-Vazquez I (2014) Particle size and hydration medium effects on hydration properties and sugar release of wheat straw fibers. Biomass Bioenergy 68:67–74. https://doi.org/10.1016/j.biombioe.2014.06.006

    Article  Google Scholar 

  16. 16.

    Neumann AP, Mccormick CA, Suen G (2018) HHS Public Access 19:3768–3783. https://doi.org/10.1111/1462-2920.13878.Fibrobacter

    Article  Google Scholar 

  17. 17.

    Valdez-Vazquez I, Pérez-Rangel M, Tapia A, Buitrón G, Molina C, Hernández G, Amaya-Delgado L (2015) Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium. Fuel 159:214–222. https://doi.org/10.1016/j.fuel.2015.06.052

    Article  Google Scholar 

  18. 18.

    Pérez-Rangel M, Quiroz-Figueroa FR, González-Castañeda J, Valdez-Vazquez I (2015) Microscopic analysis of wheat straw cell wall degradation by microbial consortia for hydrogen production. Int J Hydrog Energy 40:151–160. https://doi.org/10.1016/j.ijhydene.2014.10.050

    Article  Google Scholar 

  19. 19.

    Jayasinghearachchi HS, Sarma PM, Lal B (2012) Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well. Int J Hydrog Energy 37:5569–5578. https://doi.org/10.1016/j.ijhydene.2011.12.145

    Article  Google Scholar 

  20. 20.

    Valdez-Vazquez I, Sanchez A (2018) Proposal for biorefineries based on mixed cultures for lignocellulosic biofuel production: a techno-economic analysis. Biofuels Bioprod Biorefin 12:56–67. https://doi.org/10.1002/bbb.1828

    Article  Google Scholar 

  21. 21.

    Sanchez A, Valdez-Vazquez I, Soto A, Sánchez S, Tavarez D (2017) Lignocellulosic n-butanol co-production in an advanced biorefinery using mixed cultures. Biomass and Bioenergy 102:1-12. https://doi.org/10.1016/j.biombioe.2017.03.023

    Article  Google Scholar 

  22. 22.

    Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647. https://doi.org/10.1016/j.copbio.2011.01.011

    Article  Google Scholar 

  23. 23.

    Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. https://doi.org/10.1128/MMBR.66.3.506

    Article  Google Scholar 

  24. 24.

    Yang M, Kuittinen S, Zhang J, Vepsäläinen J, Keinänen M, Pappinen A (2015) Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone-butanol-ethanol production. Bioresour Technol 179:128–135. https://doi.org/10.1016/j.biortech.2014.12.005

    Article  Google Scholar 

  25. 25.

    Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310

    Article  Google Scholar 

  26. 26.

    Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603. https://doi.org/10.1023/A:1025103011923

    Article  Google Scholar 

  27. 27.

    Huesemann MH, Kuo LJ, Urquhart L, Gill GA, Roesijadi G (2012) Acetone-butanol fermentation of marine macroalgae. Bioresour Technol 108:305–309. https://doi.org/10.1016/j.biortech.2011.12.148

    Article  Google Scholar 

  28. 28.

    Hungate R (1958) The rumen as a continuous fermentation system. In: The rumen and its microbes, First edn. Academic press, Davis

    Google Scholar 

  29. 29.

    Thauer R, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180. https://doi.org/10.1108/eb027807

    Article  Google Scholar 

  30. 30.

    Valdez-Vazquez I, Torres-Aguirre GJ, Molina C, Ruiz-Aguilar GML (2016) Characterization of a lignocellulolytic consortium and methane production from untreated wheat straw: dependence on nitrogen and phosphorous content. BioResources 11:4237–4251. https://doi.org/10.15376/biores.11.2.4237-4251

    Article  Google Scholar 

  31. 31.

    Wang Y, Zhang Y, Wang J, Meng L (2009) Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33:848–853. https://doi.org/10.1016/j.biombioe.2009.01.007

    Article  Google Scholar 

  32. 32.

    Yu L, Bule M, Ma J, Zhao Q, Frear C, Chen S (2014) Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment. Bioresour Technol 162:243–249. https://doi.org/10.1016/j.biortech.2014.03.089

    Article  Google Scholar 

  33. 33.

    Kraemer K, Harwardt A, Bronneberg R, Marquardt W (2011) Separation of butanol from acetone-butanol-ethanol fermentation by a hybrid extraction-distillation process. Comput Chem Eng 35:949–963. https://doi.org/10.1016/j.compchemeng.2011.01.028

    Article  Google Scholar 

  34. 34.

    Harrison R, Todd P, Rudge S, Petrides D (2015) Intelligent Inc. Bioprocess Design and Economics. 2nd edn. New York

  35. 35.

    Seader J, Henley E (2011) Separation process principles, 3rd edn. Wiley, New York

  36. 36.

    Taylor R, Kooijman H (1999) The ChemSep book. ChemSep tutorial: phase equilibrium calculations. 2nd edn. New York

  37. 37.

    Zhang F, Yu S, Shen L, Zhao Q (2012) The new pinch design method for heat exchanger networks. Adv Mater Res 512–515:1253–1257. https://doi.org/10.4028/www.scientific.net/AMR.512-515.1253

    Article  Google Scholar 

  38. 38.

    Baral NR, Shah A (2016) Techno-economic analysis of cellulosic butanol production from corn stover through acetone-butanol-ethanol fermentation. Energy fuels 30: 5779–5790. https://doi.org/10.1021/acs.energyfuels.6b00819

    Article  Google Scholar 

  39. 39.

    Moncada BJ, Aristizábal MV, Cardona ACA (2016) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134. https://doi.org/10.1016/j.bej.2016.06.009

    Article  Google Scholar 

  40. 40.

    Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  41. 41.

    Verardi A, Blasi A, Marino T, Molino A (2018) Effect of steam-pretreatment combined with hydrogen peroxide on lignocellulosic agricultural wastes for bioethanol production: analysis of derived sugars and other by-products. J Energy Chem 27:535–543. https://doi.org/10.1016/j.jechem.2017.11.007

    Article  Google Scholar 

  42. 42.

    Den W, Sharma VK, Lee M et al (2018) Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value added chemicals. Front Chem 6:1–23. https://doi.org/10.3389/fchem.2018.00141

    Article  Google Scholar 

  43. 43.

    Parisutham V, Hyun T, Kuk S (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol 161:431–440. https://doi.org/10.1016/j.biortech.2014.03.114

    Article  Google Scholar 

  44. 44.

    Wen Z, Li Q, Liu J, Jin M (2019) Minireview. Consolidated bioprocessing for butanol production of cellulolytic Clostridia: development and optimization. Microb Biotechnol 1:1–13. https://doi.org/10.1111/1751-7915.13478

    Article  Google Scholar 

  45. 45.

    Jiang L, Wu Q, Xu Q, Zhu L, Huang H (2017) Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-07207-7

    Article  Google Scholar 

  46. 46.

    Zhang J, Wang P, Wang X, Feng J, Sandhu HS, Wang Y (2018) Enhancement of sucrose metabolism in Clostridium saccharoperbutylacetonicum N1-4 through metabolic engineering for improved acetone – butanol – ethanol ( ABE ) fermentation. Bioresour Technol 270:430–438. https://doi.org/10.1016/j.biortech.2018.09.059

    Article  Google Scholar 

  47. 47.

    Béligon V, Noblecourt A, Christophe G, Lebert A, Larroche C, Fontanille P (2018) Proof of concept for biorefinery approach aiming at two bioenergy production compartments, hydrogen and biodiesel, coupled by an external membrane. Biofuels 9:163–174. https://doi.org/10.1080/17597269.2016.1259142

    Article  Google Scholar 

  48. 48.

    Raman B, Mckeown CK, Rodriguez M, Brown SD, Mielenz JR (2011) Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 11:134. https://doi.org/10.1186/1471-2180-11-134

  49. 49.

    Xin F, Dong W, Zhang W, Ma J, Jiang M (2019) Biobutanol production from crystalline cellulose through consolidated bioprocessing. Trends Biotechnol 37:167–180. https://doi.org/10.1016/j.tibtech.2018.08.007

    Article  Google Scholar 

  50. 50.

    Shanmugam S, Sun C, Chen Z, Wu Y (2019) Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy. Bioresour Technol 279:149–155. https://doi.org/10.1016/j.biortech.2019.01.121

    Article  Google Scholar 

  51. 51.

    My Tran HT, Cheirsilp B, Hodgson B, Umsakul K (2010) Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone – butanol – ethanol production from cassava starch. Biochem Eng J 48:260–267. https://doi.org/10.1016/j.bej.2009.11.001

    Article  Google Scholar 

  52. 52.

    Mai S, Wang G, Wu P, Gu C, Liu H, Zhang J, Wang G (2017) Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions. Biotechnol Appl Biochem 64:719–726. https://doi.org/10.1002/bab.1522

    Article  Google Scholar 

  53. 53.

    Xin F, He J (2013) Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour Technol 135:309–315. https://doi.org/10.1016/j.biortech.2012.10.002

    Article  Google Scholar 

  54. 54.

    Kiyoshi K, Furukawa M, Seyama T, Kadokura T, Nakazato A, Nakayama S (2015) Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum. Bioresour Technol 186:325–328. https://doi.org/10.1016/j.biortech.2015.03.061

    Article  Google Scholar 

  55. 55.

    Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) Lignocellulosic biomass to ethanol design economic. Natl Renew Energy Lab NREL/TP-510-32438

  56. 56.

    Qureshi N, Saha BC, Cotta MA, Singh V (2013) An economic evaluation of biological conversion of wheat straw to butanol: a biofuel. Energy Convers Manag 65:456–462. https://doi.org/10.1016/j.enconman.2012.09.015

    Article  Google Scholar 

  57. 57.

    Pinto A, Dias MOS, Junqueira TL, Cunha MP, Bonomi A, Maciel Filho R (2013) Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production. Bioresour Technol 142:390–399. https://doi.org/10.1016/j.biortech.2013.05.052

    Article  Google Scholar 

Download references

Acknowledgments

CE Molina-Guerrero acknowledges to the Division of Sciences and Engineering of the University of Guanajuato, Campus León, for the support of this project. E Vázquez-Núñez thanks to the University of Guanajuato for the technical support and to BVF for her patient assistance. Partial financial support is kindly acknowledged from the Energy Sustainability Fund 2014-05 (CONACYT-SENER), Mexican Bioenergy Innovation Centre, Bioalcohols Cluster (249564). Feedback from the reviewers is also deeply appreciated. The authors thank Maggie Brunner for English correction.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Molina-Guerrero.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 596 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molina-Guerrero, C.E., Valdez-Vazquez, I., Sanchez, A. et al. A biorefinery based on the biomechanical configuration of the digestive system of a ruminant for ABE production: a consolidated bioprocessing approach. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00620-5

Download citation

Keywords

  • Biofuel
  • Clostridium
  • Co-generation
  • Process intensification
  • Wheat straw