Skip to main content

Residual Mexican biomasses for bioenergy and fine chemical production: correlation between composition and specific applications


The conversion of renewable biomasses into biofuels and chemicals represents a strategic way to reduce the use of fossil feedstock, by contributing in switching to a more sustainable society. The use of agro-industrial wastes does not subtract resources destined for food consumption. In addition, waste utilization would result in a reduction of its accumulation, with a consequent decrease of environmental impact and financial losses due to the relevant disposal. In this context, a wide variety of exploitable agricultural resources can be used to support this sustainable growth. However, the characterization represents the first step towards a targeted and proficient exploitation of the chemical and energetic potential of a residual biomass. In this work, some representative residual (Mexican) biomasses were investigated: pepper residues (Hungarian yellow and red variety), coconut shells (Cocos nucifera), flamboyant pods (Delonix regia), seeds of avocado (Persea Americana), palm (Palma de Coroco) and nance (Byrsonima crassifolia) were chemically characterized and the relevant potential applications for the synthesis of biofuels and fine chemicals were specifically evaluated. Lipids, structural carbohydrates, and lignin were specifically valorized in a proficient cascade of technologies, which aim to exploit the correspondent potential, according to the principles of biorefinery and circular economy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Tripathi AD, Mishra R, Maurya KK, Singh RB, Wilson DW (2018) Estimates for world population and global food availability for global health. The Role of Functional Food Security in Global Health, Academic Press, In, pp 3–24

    Google Scholar 

  2. 2.

    Khalili S, Rantanen E, Bogdanov D, Breyer C (2019) Global transportation demand development with impacts on the energy demand and greenhouse gas emissions in a climate-constrained world. Energies 12:3870.

    Article  Google Scholar 

  3. 3.

    Full report – BP Statistical Review of World Energy (2019). Accessed 30 October 2019

  4. 4.

    Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12:964.

    Article  Google Scholar 

  5. 5.

    Sequeira TN, Santos MS (2018) Renewable energy and politics: a systematic review and new evidence. J Clean Prod 192:553–568.

    Article  Google Scholar 

  6. 6.

    Bauwens T, Devine-Wright P (2018) Positive energies? An empirical study of community energy participation and attitudes to renewable energy. Energ Policy 118:612–625.

    Article  Google Scholar 

  7. 7.

    Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sust Energ Rev 15:1513–1524.

    Article  Google Scholar 

  8. 8.

    Demirbas A (2009) Global renewable energy projections. Energ Sources Part B 4:212–224.

    Article  Google Scholar 

  9. 9.

    Menegaki A (2008) Valuation for renewable energy: a comparative review. Renew Sust Energ Rev 12:2422–2437.

    Article  Google Scholar 

  10. 10.

    Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sust Energ Rev 73:205–214.

    Article  Google Scholar 

  11. 11.

    Ghosh D, Dasgupta D, Agrawal D, Kaul S, Adhikari DK, Kurmi AK, Arya PK, Bangwal D, Negi MS (2015) Fuels and chemicals from lignocellulosic biomass: an integrated biorefinery approach. Energ Fuel 29:3149–3157.

    Article  Google Scholar 

  12. 12.

    Gautam K, Gupta NC, Sharma DK (2014) Physical characterization and comparison of biodiesel produced from edible and non-edible oils of Madhuca indica (mahua), Pongamia pinnata (karanja), and Sesamum indicum (til) plant oilseeds. Biomass Conv Bioref 4:193–200.

    Article  Google Scholar 

  13. 13.

    Nzihou A (2010) Toward the valorization of waste and biomass. Renew Sust Energ Rev 1:3–7.

    Article  Google Scholar 

  14. 14.

    Chum HL, Overend RP (2001) Biomass and renewable fuels. Fuel Process Technol 71:187–195.

    Article  Google Scholar 

  15. 15.

    di Bitonto L, Pastore C (2019) Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel. Renew Energ 143:1193–1200.

    Article  Google Scholar 

  16. 16.

    Rashama C, Ijoma G, Matambo T (2019) Biogas generation from by-products of edible oil processing: a review of opportunities, challenges and strategies. Biomass Conv Bioref 1–24.

  17. 17.

    di Bitonto L, Lopez A, Mascolo G, Mininni G, Pastore C (2016) Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel. Renew Energ 90:55–61.

    Article  Google Scholar 

  18. 18.

    Simell P, Hannula I, Tuomi S, Nieminen M, Kurkela E, Hiltunen I, Kaisalo N, Kilhlman J (2014) Clean syngas from biomass—process development and concept assessment. Biomass Conv Bioref 4:357–370.

    Article  Google Scholar 

  19. 19.

    Pastore C, Lopez A, Mascolo G (2014) Efficient conversion of brown grease produced by municipal wastewater treatment plant into biofuel using aluminium chloride hexahydrate under very mild conditions. Bioresour Technol 155:91–97.

    Article  Google Scholar 

  20. 20.

    Varma RS (2019) Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain Chem Eng 7:6458–6470.

    Article  Google Scholar 

  21. 21.

    Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40:5588–5617.

    Article  Google Scholar 

  22. 22.

    Gallezot P (2007) Catalytic routes from renewables to fine chemicals. Catal Today 121:76–91.

    Article  Google Scholar 

  23. 23.

    SENER. National Energy Balance (2018). Accessed 30 October 2019

  24. 24.

    Policy brief Mexico’s General Law on Climate Change: Successes and challenges (2019).’s-General-Law-on-Climate-Change-Successes-and-challenges_8pp_AverchenkovaGuzman-2.pdf. Accessed 30 October 2019

  25. 25.

    LAERFTE. Law for the Use of Renewable Energy and Finance of the Energy Transition (2019). Accessed 30 October 2019

  26. 26.

    Baskar G, Aiswarya R (2016) Trends in catalytic production of biodiesel from various feedstocks. Renew Sust Energ Rev 57:496–504.

    Article  Google Scholar 

  27. 27.

    Tubino M, Junior JGR, Bauerfeldt GF (2016) Biodiesel synthesis: a study of the triglyceride methanolysis reaction with alkaline catalysts. Catal Comm 75:6–12.

    Article  Google Scholar 

  28. 28.

    Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sust Energ Rev 16:4763–4784.

    Article  Google Scholar 

  29. 29.

    Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sust Energ Rev 4:111–133.

    Article  Google Scholar 

  30. 30.

    Buyukkaya E (2010) Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89:3099–3105.

    Article  Google Scholar 

  31. 31.

    Szybist JP, Song J, Alam M, Boehman AL (2007) Biodiesel combustion, emissions and emission control. Fuel Process Technol 88:679–691.

    Article  Google Scholar 

  32. 32.

    Ruiz HA, Martínez A, Vermerris W (2016) Bioenergy potential, energy crops, and biofuel production in Mexico. Bioenerg Res 9:981–984.

    Article  Google Scholar 

  33. 33.

    Montero G, Stoytcheva M, Coronado M, García C, Cerezo J, Toscano L, Vázquez AM, León JA (2015) An overview of biodiesel production in Mexico (Vol. 19). In: Biofuels status and perspective. Krzysztof Biernat, Croatia

  34. 34.

    ISO 11465 (1993) Soil quality e determination of dry matter and water content on a mass basis and gravimetric method

  35. 35.

    ISO 3657 (2013) Animal and vegetable fats and oils — determination of saponification value

  36. 36.

    NREL Technical Report/TP-510-42618 (2012) Determination of Structural carbohydrates and lignin in biomass

  37. 37.

    FAOSTAT. Food and Agriculture Organization of the United Nations (2019).

  38. 38.

    Kolekar SM, Jain BU, Kondawarkar MS (2019) A review on steroids and terpenoids (stereochemistry, structural elucidation, isolation of steroids and terpenoids). RJPDFT 11:126–130.

    Article  Google Scholar 

  39. 39.

    Delazar A, Reid RG, Sarker SD (2004) GC-MS analysis of the essential oil form oleoresin of Pistacia atlantica VAR. mutica. Chem Nat Comp 40:24–27.

    Article  Google Scholar 

  40. 40.

    Scora RW, Ahmed M (1993) Terpenes of Persea tolimanensis (Lauraceae), an ancestor of the Guatemalan avocados. J Agr Food Chem 41:1971–1973.

    Article  Google Scholar 

  41. 41.

    Omeje KO, Ozioko JN, Opmeje HC (2018) Pharmacological potentials, characterization and fatty acids profile of Persea americana Mill. (Avocado) seed oil using gas chromatography-mass spectroscopy. Biochem Anal Biochem 7:2161–1009.

    Article  Google Scholar 

  42. 42.

    Roy DN (2019) In: Terpenoids against human diseases. Press, CRC

    Book  Google Scholar 

  43. 43.

    Rabi T, Bishayee A (2019) Terpenoids and breast cancer chemoprevention. Breast Cancer Res Tr 115:223–239.

    Article  Google Scholar 

  44. 44.

    di Bitonto L, Todisco S, Gallo V, Pastore C (2020) Urban sewage scum and primary sludge as profitable sources of biodiesel and biolubricants of new generation. Bioresour Technol Rep, in press.

  45. 45.

    Murphy JD, McCarthy K (2005) Ethanol production from energy crops and wastes for use as a transport fuel in Ireland. Appl Energ 82:148–166.

    Article  Google Scholar 

  46. 46.

    Dermibas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energ. Source 27:327–337.

    Article  Google Scholar 

  47. 47.

    OECD-FAO Agricultural Outlook 2017–2026 (2019) Accessed 30 October 2019

  48. 48.

    Dutta S, Pal S (2014) Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: combined solvent–nanocatalysis approach for biorefinery. Bioenerg Res 62:182–197.

    Article  Google Scholar 

  49. 49.

    Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94.

    Article  Google Scholar 

  50. 50.

    Su Y, Brown HM, Huang X, Zhou XD, Amonette JE, Zhang ZC (2009) Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Appl Catal A Gen 361:117–122.

    Article  Google Scholar 

  51. 51.

    Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, Granados ML (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energ Environ Sci 9:1144–1189.

    Article  Google Scholar 

  52. 52.

    Lange JP, Van Der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5:150–166.

    Article  Google Scholar 

  53. 53.

    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554.

    Article  Google Scholar 

  54. 54.

    Van Nguyen C, Liao YT, Kang TC, Chen JE, Yoshikawa T, Nakasaka Y, Masuda T, Wu KCW (2016) A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem 18:5957–5961.

    Article  Google Scholar 

  55. 55.

    Lolli A, Albonetti S, Utili L, Amadori R, Ospitali F, Lucarelli C, Cavani F (2015) Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd–Au nanoparticles. Appl Catal A Gen 504:408–419.

    Article  Google Scholar 

  56. 56.

    Jung D, Körner P, Kruse A (2019) Kinetic study on the impact of acidity and acid concentration on the formation of 5-hydroxymethylfurfural (HMF), humins, and levulinic acid in the hydrothermal conversion of fructose. Biomass Conv Bioref:1–16.

  57. 57.

    di Bitonto L, Locaputo V, D'Ambrosio V, Pastore C (2020) Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels. Appl Energ 259:114163.

    Article  Google Scholar 

  58. 58.

    Rackemann DW, Doherty WO (2011) The conversion of lignocellulosics to levulinic acid. Biofuel Bioprod Bior 5:198–214.

    Article  Google Scholar 

  59. 59.

    di Bitonto L, Antonopoulou G, Braguglia C, Campanale C, Gallipoli A, Lyberatos G, Ntaikou I, Pastore C (2018) Lewis-Brønsted acid catalysed ethanolysis of the organic fraction of municipal solid waste for efficient production of biofuels. Bioresour Technol 266:297–305.

    Article  Google Scholar 

  60. 60.

    Corbel-Demailly L, Ly BK, Minh DP, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C (2013) Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions. ChemSusChem 6:2388–2395.

    Article  Google Scholar 

  61. 61.

    Alonso DM, Gallo JMR, Mellmer MA, Wettstein SG, Dumesic JA (2013) Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal Sci Technol 3:927–931.

    Article  Google Scholar 

  62. 62.

    Lange JP, Vestering JZ, Haan RJ (2007) Towards ‘bio-based’ Nylon: conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem Comm 33:3488–3490.

    Article  Google Scholar 

  63. 63.

    Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Bioresour Technol 99:6017–6027.

    Article  Google Scholar 

  64. 64.

    Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour Technol 160:191–202.

    Article  Google Scholar 

  65. 65.

    Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. Methods 1:12–18. JMESSP13420004

  66. 66.

    di Bitonto L, Volpe A, Pagano M, Bagnuolo G, Mascolo G, La Parola V, Di Leo P, Pastore C (2017) Amorphous boron-doped sodium titanates hydrates: efficient and reusable adsorbents for the removal of Pb2+ from water. J Hazard Mater 324:168–177.

    Article  Google Scholar 

  67. 67.

    Babel S, Kurniawan TA (2004) Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54:951–967.

    Article  Google Scholar 

  68. 68.

    Tejada-Tovar C, Gonzalez-Delgado AD, Villabona-Ortiz A (2019) Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. Appl Sci 9:4486.

    Article  Google Scholar 

  69. 69.

    Díaz-Muñoz LL, Bonilla-Petriciolet A, Reynel-Ávila HE, Mendoza-Castillo DI (2016) Sorption of heavy metal ions from aqueous solution using acid-treated avocado kernel seeds and its FTIR spectroscopy characterization. J Mol Liq 215:555–564.

    Article  Google Scholar 

  70. 70.

    Amuda OS, Giwa A, Bello IA (2007) Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J 36:174–181.

    Article  Google Scholar 

  71. 71.

    Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd (II) from aqueous solution. Adv Environ Res 7:471–478.

    Article  Google Scholar 

  72. 72.

    Reynel-Avila HE, Mendoza-Castillo DI, Olumide AA, Bonilla-Petriciolet A (2016) A survey of multi-component sorption models for the competitive removal of heavy metal ions using bush mango and flamboyant biomasses. J Mol Liq 224:1041–1054.

    Article  Google Scholar 

  73. 73.

    Mustapha SI, Adewoye LT, Aderibigbe FA, Alhaji MH, Adekola MI, Tijani IA (2017) Removal of lead and chromium from aqueous solution onto flamboyant (Delonix regia) pod activated carbon. Niger J Technol Dev 14:56–66.

    Article  Google Scholar 

  74. 74.

    Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarakos E (2012) Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manage 96:35–42.

    Article  Google Scholar 

  75. 75.

    Kurniawan TA, Chan GY, Lo WH, Babel S (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366:409–426.

    Article  Google Scholar 

  76. 76.

    Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884.

    Article  Google Scholar 

  77. 77.

    Liu Z, Zhang F (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167:933–939.

    Article  Google Scholar 

  78. 78.

    Kong H, He J, Gao Y, Wu H, Zhu X (2011) Cosorption of phenanthrene and mercury (II) from aqueous solution by soybean stalk-based biochar. J Agric Food Chem 59:12116–12123.

    Article  Google Scholar 

  79. 79.

    Shawabkeh RA, Rockstraw DA, Bhada RK (2002) Copper and strontium adsorption by a novel carbon material manufactured from pecan shells. Carbon 40:781–786.

    Article  Google Scholar 

  80. 80.

    Aguayo-Villarreal IA, Bonilla-Petriciolet A, Muñiz-Valencia R (2017) Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J Mol Liq 230:686–695.

    Article  Google Scholar 

  81. 81.

    Witek-Krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 265:126–134.

    Article  Google Scholar 

  82. 82.

    Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96:1518–1521.

    Article  Google Scholar 

  83. 83.

    Richards S, Dawson J, Stutter M (2019) The potential use of natural vs commercial biosorbent material to remediate stream waters by removing heavy metal contaminants. J Environ Manage 231:275–281.

    Article  Google Scholar 

  84. 84.

    Kołodyńska D, Krukowska J, Thomas P (2017) Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem Eng J 307:353–363.

    Article  Google Scholar 

  85. 85.

    Kuroki A, Hiroto M, Urushihara Y, Horikawa T, Sotowa K, Avila JRA (2019) Adsorption mechanism of metal ions on activated carbon. Adsorption 25:1251–1258.

    Article  Google Scholar 

  86. 86.

    Velghe I, Carleer R, Yperman J, Schreurs S, D’Haen J (2012) Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix. Water Res 46:2783–2794.

    Article  Google Scholar 

  87. 87.

    Radjenovic A, Medunic G (2015) Removal of Cr(VI) from aqueous solution by a commercial carbon black. Desalin Water Treat 55:183–192.

    Article  Google Scholar 

  88. 88.

    Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere 134:232–240.

    Article  Google Scholar 

  89. 89.

    Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18.

    Article  Google Scholar 

  90. 90.

    Kalus K, Koziel JA, Opaliński S (2019) A review of biochar properties and their utilization in crop agriculture and livestock production. Appl Sci 9:3494.

    Article  Google Scholar 

Download references


This project was supported by IProPBio “Integrated Process and Product Design for Sustainable Biorefineries (MSCA – RISE 2017: Research and Innovation Staff Exchange,” Project ID: 778168.

Author information



Corresponding author

Correspondence to Carlo Pastore.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

di Bitonto, L., Reynel-Ávila, H.E., Mendoza-Castillo, D.I. et al. Residual Mexican biomasses for bioenergy and fine chemical production: correlation between composition and specific applications. Biomass Conv. Bioref. 11, 619–631 (2021).

Download citation


  • Bioenergy
  • Biorefinery
  • Valorization
  • Waste biomass
  • Biodiesel
  • Circular economy