Experimental investigation on anaerobic co-digestion of food waste and water hyacinth in batch type reactor under mesophilic condition


India generated around 1.45 lakh tonne of municipal solid waste (MSW) per day, out of which 40% is organic biodegradable waste, which has food waste as the major component. Scientific conversion of this food waste to energy is always challenging. In the present study, anaerobic digestibility of food waste as a mono digestion substrate and co-digestion of food waste with water hyacinth were tested and analyzed in a batch type anaerobic digester of capacity 60 l. Four different samples, i.e., only food waste, only water hyacinth, and with food waste to water hyacinth in the ratio of 15:2 and 8:3 to maintain total solids contain equal in all samples were analyzed for the anaerobic digestion (AD). Biogas yield for the above four samples were found to be 370.85 (ml/g VS), 320.54 (ml/g VS), 286.50 (ml/g VS), and 298.83 (ml/g VS), respectively. The average methane content was found to be 68.3%, 58.2%, 52.1%, and 65.4%, respectively whereas CO2 content was found to be 30.2%, 40.9%, 46.6%, and 33.3%, respectively, using gas chromatography. The temperature variation for anaerobic digester was measured in the range of 32 to 43 °C during the experiment without supplying any external heat. pH value of all samples was ranged between 6.5 and 7.5 at the end of the experiment. The results of this study conclude that co-digestion of food waste with water hyacinth has higher operational stability compared to mono digestion of food waste.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Gustavsson J, Cederberg C, Sonesson U, et al (2011) Global food losses and food waste

  2. 2.

    Searchinger T, Waite R, Hanson C, et al (2018) Creating a sustainable food future: synthesis report

  3. 3.

    Joshi R, Ahmed S (2016) Status and challenges of municipal solid waste management in India: a review. Cogent Environ Sci 2:1–18. https://doi.org/10.1080/23311843.2016.1139434

    Article  Google Scholar 

  4. 4.

    Kumar V, Pandit RK (2013) Problems of solid waste management in Indian cities. Int J Sci Res Publ 3:2250–3153

    Google Scholar 

  5. 5.

    Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392. https://doi.org/10.1016/j.rser.2014.05.038

    Article  Google Scholar 

  6. 6.

    Banks CJ, Chesshire M, Heaven S, Arnold R (2011) Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour Technol 102:612–620. https://doi.org/10.1016/j.biortech.2010.08.005

    Article  Google Scholar 

  7. 7.

    Zhang C, Xiao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176. https://doi.org/10.1016/j.biortech.2012.10.138

    Article  Google Scholar 

  8. 8.

    Zhang R, El-Mashad HM, Hartman K et al (2007) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98:929–935. https://doi.org/10.1016/j.biortech.2006.02.039

    Article  Google Scholar 

  9. 9.

    Kim HW, Han SK, Shin HS (2003) The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manag Res 21:515–526. https://doi.org/10.1177/0734242X0302100604

    Article  Google Scholar 

  10. 10.

    Cho JK, Park SC, Chang HN (1995) Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour Technol 52:245–253. https://doi.org/10.1016/0960-8524(95)00031-9

    Article  Google Scholar 

  11. 11.

    Heo NH, Park SC, Kang PH (2004) Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. J Environ Sci Health A 39:1739–1756. https://doi.org/10.1081/ESE-120037874

    Article  Google Scholar 

  12. 12.

    Zhang J, Wang Q, Jiang J (2013) Lime mud from paper-making process addition to food waste synergistically enhances hydrogen fermentation performance. Int J Hydrog Energy 38:2738–2745. https://doi.org/10.1016/j.ijhydene.2012.12.048

    Article  Google Scholar 

  13. 13.

    Haider MR, Zeshan YS et al (2015) Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour Technol 190:451–457. https://doi.org/10.1016/j.biortech.2015.02.105

    Article  Google Scholar 

  14. 14.

    Zhang L, Lee YW, Jahng D (2011) Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour Technol 102:5048–5059. https://doi.org/10.1016/j.biortech.2011.01.082

    Article  Google Scholar 

  15. 15.

    Prasad R, Yadav KD (2016) Water hyacinth as a potential natural resource

  16. 16.

    Zhang J, Wang Q, Zheng P, Wang Y (2014) Anaerobic digestion of food waste stabilized by lime mud from papermaking process. Bioresour Technol 170:270–277. https://doi.org/10.1016/j.biortech.2014.08.003

    Article  Google Scholar 

  17. 17.

    Zhang Y, Banks CJ, Heaven S (2012) Co-digestion of source segregated domestic food waste to improve process stability. Bioresour Technol 114:168–178. https://doi.org/10.1016/j.biortech.2012.03.040

    Article  Google Scholar 

  18. 18.

    Chen X, Romano RT, Zhang R (2010) Anaerobic digestion of food wastes for biogas production. Int J Agric Biol Eng 3:61–72. https://doi.org/10.3965/j.issn.1934-6344.2010.04.061-072

    Article  Google Scholar 

  19. 19.

    El-Mashad HM, Zeeman G, Van Loon WKP, et al (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour Technol 95:191–201. https://doi.org/10.1016/j.biortech.2003.07.013

Download references

Author information



Corresponding author

Correspondence to Purnanand V. Bhale.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zala, M., Solanki, R., Bhale, P.V. et al. Experimental investigation on anaerobic co-digestion of food waste and water hyacinth in batch type reactor under mesophilic condition. Biomass Conv. Bioref. 10, 707–714 (2020). https://doi.org/10.1007/s13399-019-00522-1

Download citation


  • Anaerobic co-digestion
  • Water hyacinth
  • Mesophilic
  • Biogas yield
  • Food waste