Skip to main content
Log in

Lignin from second-generation biorefinery for pressure-sensitive adhesive tapes

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this work, the potential of lignin as a filler additive and anti-aging agent in a pressure-sensitive adhesive (PSA) based on natural rubber (NR) was investigated. Herein, different approaches to incorporate lignin into NR matrix by adaptation of a two-step compounding process were evaluated. At first, a twin-screw extruder (TSE) was utilized to prepare pre-formulations followed by the secondary finalization of adhesive mass inside a planetary roll extruder (PRE). For the industrial production of PSAs, the adhesive mass is required to have well-distributed additive materials and adequate adhesion, cohesion, and longevity. The impact of the added lignin was evaluated concerning optical appearance, compatibility between lignin and rubber/resin, adhesion performance, shear strength, thermal stability, antioxidant capability, dynamic-mechanical behavior, aging behavior at elevated temperature and under UV exposure, and filler morphology. It was found that the PSAs including aquasolv (AS) lignin after the spray-drying post-treatment exhibited excellent thermal, mechanical, and antioxidative properties. Thus, it was shown that the sustainably producible lignin can be utilized both as filler and antioxidant in natural rubber-based pressure-sensitive adhesive masses with comparable performance properties as commercially available products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DBJB (2011) Biomass pretreatment: fundamentals toward application. 29(6):675–685

  2. Benedek I, Feldstein MM (2008) Technology of pressure-sensitive adhesives and products. CRC press

  3. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546

    Article  Google Scholar 

  4. Canakci A, Erdemir F, Varol T, Patir AJM (2013) Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: measurement and analysis. 46(9):3532–3540

  5. Cantor AS, Menon VPJE o. P. S., & technology (2002) Pressure-sensitive adhesives

    Google Scholar 

  6. Chung H, Washburn NR (2016) Extraction and types of lignin. In: Lignin in polymer composites. Elsevier, pp 13–25. https://doi.org/10.1016/B978-0-323-35565-0.00002-3

  7. El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus. Polym Degrad Stab 94(10):1632–1638. https://doi.org/10.1016/j.polymdegradstab.2009.07.007

    Article  Google Scholar 

  8. Gairola K, Smirnova IJ Bt (2012) Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2–kinetics and application to biomass hydrolysates. 123:592–598

  9. García A, Alriols MG, Spigno G, Labidi J (2012) Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J 67:173–185

    Article  Google Scholar 

  10. Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101. https://doi.org/10.1016/j.ijadhadh.2013.09.001

    Article  Google Scholar 

  11. Gorrasi G, Sorrentino AJGC (2015) Mechanical milling as a technology to produce structural and functional bio-nanocomposites. 17(5):2610–2625

  12. Hansen B, Kusch P, Schulze M, Kamm B (2016) Qualitative and quantitative analysis of lignin produced from beech wood by different conditions of the organosolv process. J Polym Environ 24(2):85–97. https://doi.org/10.1007/s10924-015-0746-3

    Article  Google Scholar 

  13. Ingram T, Wörmeyer K, Lima JCI, Bockemühl V, Antranikian G, Brunner G, Smirnova, I. J. B. t. (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products. 102(8):5221–5228

  14. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung. GESTIS-STAUB-EX: Lignin - 1, 2019

  15. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung. GESTIS-STAUB-EX: Lignin - 2, 2019

  16. Ji X, Guo M (2018) Preparation and properties of a chitosan-lignin wood adhesive. Int J Adhes Adhes 82:8–13. https://doi.org/10.1016/j.ijadhadh.2017.12.005

    Article  Google Scholar 

  17. Kalami S, Arefmanesh M, Master E, Nejad M (2017) Replacing 100% of phenol in phenolic adhesive formulations with lignin: ARTICLE. J Appl Polym Sci 134(30):45124. https://doi.org/10.1002/app.45124

    Article  Google Scholar 

  18. Laurichesse S, Averous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  Google Scholar 

  19. Lora J (2008) Industrial commercial lignins: sources, properties and applications. In: Monomers, polymers and composites from renewable resources. Elsevier, pp 225–241

  20. Luo H, Abu-Omar MM (2018) Lignin extraction and catalytic upgrading from genetically modified poplar. Green Chem 20(3):745–753. https://doi.org/10.1039/C7GC03417B

    Article  Google Scholar 

  21. Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch MJ Bt (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. 96(6):673–686

  22. Osswald T, Hernández-Ortiz JPJM, Hanser SM (2006) Polymer processing, pp 1–651

    Book  Google Scholar 

  23. Perez-Cantu L, Schreiber A, Schütt F, Saake B, Kirsch C, Smirnova I (2013) Comparison of pretreatment methods for rye straw in the second generation biorefinery: effect on cellulose, hemicellulose and lignin recovery. Bioresour Technol 142:428–435

    Article  Google Scholar 

  24. Perez-Cantu L, Liebner F, Smirnova IJM, Materials M (2014) Preparation of aerogels from wheat straw lignin by cross-linking with oligo (alkylene glycol)-α, ω-diglycidyl ethers. 195:303–310

  25. Pizzi A, Mittal KL (2017) Handbook of adhesive technology. CRC press

  26. Rauwendaal C (2014) Polymer extrusion. Carl Hanser Verlag GmbH Co KG

  27. Reynolds W, Kirsch C, Smirnova IJCIT (2015) Thermal-enzymatic hydrolysis of wheat straw in a single high pressure fixed bed. 87(10):1305–1312

  28. Reynolds W, Baudron V, Kirsch C, Schmidt LM, Singer H, Zenker L, Zetzl C, Smirnova I (2016) Odor-free lignin from lignocellulose by means of high pressure unit operations: process design, assessment and validation. Chem Ing Tech 88(10):1513–1517. https://doi.org/10.1002/cite.201600005

    Article  Google Scholar 

  29. Schmidt LM, Martínez VP, Kaltschmitt MJ Bt (2018) Solvent-free lignin recovered by thermal-enzymatic treatment using fixed-bed reactor technology–economic assessment. 268:382–392

  30. Schulze P, Seidel-Morgenstern A, Lorenz H, Leschinsky M, Unkelbach G (2016) Advanced process for precipitation of lignin from ethanol organosolv spent liquors. Bioresour Technol 199:128–134. https://doi.org/10.1016/j.biortech.2015.09.040

    Article  Google Scholar 

  31. Sivasankarapillai G, Eslami E, Laborie M-PG (2019) Potential of organosolv lignin based materials in pressure sensitive adhesive applications. ACS Sustain Chem Eng 7:12817–12824. https://doi.org/10.1021/acssuschemeng.9b01670

    Article  Google Scholar 

  32. Standard, T. J. T.o (2002). Acid-insoluble lignin in wood and pulp

    Google Scholar 

  33. Theng D, El Mansouri N-E, Arbat G, Ngo B, Delgado-Aguilar M, Pèlach MÀ, Fullana-i-Palmer P, Mutjé P (2017) Fiberboards made from corn stalk thermomechanical pulp and kraft lignin as a green adhesive. BioResources 12(2). https://doi.org/10.15376/biores.12.2.2379-2393

  34. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905

    Article  Google Scholar 

  35. Vazquez-Olivo G, López-Martínez LX, Contreras-Angulo L, Heredia JB (2017) Antioxidant capacity of lignin and phenolic compounds from corn stover. Waste Biomass Valorization:1–8

  36. Vicente J, Pinto J, Menezes J, Gaspar FJ Pt (2013) Fundamental analysis of particle formation in spray drying. 247:1–7

  37. Walton DJDT (2000) The morphology of spray-dried particles a qualitative view. 18(9):1943–1986

  38. Wang S, Shuai L, Saha B, Vlachos DG, Epps TH (2018) From tree to tape: direct synthesis of pressure sensitive adhesives from depolymerized raw lignocellulosic biomass. ACS Cent Sci 4(6):701–708. https://doi.org/10.1021/acscentsci.8b00140

    Article  Google Scholar 

  39. Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part II: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102(5):4157–4164. https://doi.org/10.1016/j.biortech.2010.11.063

    Article  Google Scholar 

  40. Yang W, Owczarek J, Fortunati E, Kozanecki M, Mazzaglia A, Balestra G et al (2016) Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind Crop Prod 94:800–811

    Article  Google Scholar 

  41. Zhao M, Jing J, Zhu Y, Yang X, Wang X, Wang Z (2016) Preparation and performance of lignin–phenol–formaldehyde adhesives. Int J Adhes Adhes 64:163–167. https://doi.org/10.1016/j.ijadhadh.2015.10.010

    Article  Google Scholar 

  42. Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X et al (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. 199:68–75

Download references

Funding

This work was financially supported by the German Federal Ministry of Education and Research (BMBF) in the context of the German project cluster BIOREFINERY2021 (031A233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihua Hu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Gil-Chavez, J., Hadzi-Ristic, A. et al. Lignin from second-generation biorefinery for pressure-sensitive adhesive tapes. Biomass Conv. Bioref. 11, 2347–2358 (2021). https://doi.org/10.1007/s13399-019-00508-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00508-z

Keywords

Navigation