Advertisement

Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass

  • Anıl Tevfik Koçer
  • Burak Mutlu
  • Didem ÖzçimenEmail author
Original Article
  • 145 Downloads

Abstract

In the present work, the effect of pyrolysis conditions on biochar yield obtained from Chlorella vulgaris was examined statistically and the pyrolysis kinetics was determined using a thermogravimetric analyzer. For the production of biochar from microalgae, pyrolysis was carried out at the temperatures of 300, 500, and 700 °C, with the heating rates of 5, 15, and 25 °C/min, retention time of 0, 15, and 30 min, and nitrogen flow rate of 100 ml/min. For the examination of pyrolysis kinetic parameters, dried microalga was heated up to 900 °C at four different heating values of 5, 10, 25, and 50 °C/min at a constant nitrogen flow rate of 40 ml/min. Optimum pyrolysis conditions and the most suitable pyrolysis kinetic model were determined for Chlorella vulgaris. According to the obtained results, it was seen that Chlorella vulgaris could be easily evaluated in thermal conversion processes. Also, these results provide valuable information for optimization of biochar production, and modeling and designing of new pyrolysis systems using microalgal biomass.

Keywords

Pyrolysis Biochar Microalgae Chlorella vulgaris Pyrolysis kinetics 

Notes

References

  1. 1.
    Dincer I, Rosen MA (1999) Energy, environment and sustainable development. Appl Energy 64(1–4):427–440CrossRefGoogle Scholar
  2. 2.
    Adelard L, Poulsen TG, Rakotoniaina V (2015) Biogas and methane yield in response to co-and separate digestion of biomass wastes. Waste Manage Res 33(1):55–62CrossRefGoogle Scholar
  3. 3.
    Özçimen D (2013) An approach to the characterization of biochar and bio-oil. Renew Energy Sustain Future iConcept Press:41–58Google Scholar
  4. 4.
    Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378CrossRefGoogle Scholar
  5. 5.
    Bach Q-V, Chen W-H (2017) A comprehensive study on pyrolysis kinetics of microalgal biomass. Energy Convers Manag 131:109–116CrossRefGoogle Scholar
  6. 6.
    Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from algae. Proced Eng 105:763–768CrossRefGoogle Scholar
  7. 7.
    Özçimen D, İnan B, Koçer AT, Reyimu Z (2016) Sustainable biorefinery design for algal biofuel production. In: Biofuels: production and future perspectives. CRC Press, pp 431–460Google Scholar
  8. 8.
    Nautiyal P, Subramanian K, Dastidar M (2014) Production and characterization of biodiesel from algae. Fuel Process Technol 120:79–88CrossRefGoogle Scholar
  9. 9.
    Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt FT, Bouwer EJ (2015) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour Technol 183:229–239CrossRefGoogle Scholar
  10. 10.
    Reyimu Z, Özçimen D (2017) Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J Clean Prod 150:40–46CrossRefGoogle Scholar
  11. 11.
    Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606CrossRefGoogle Scholar
  12. 12.
    Kim Y-M, Lee HW, Kim S, Watanabe C, Park Y-K (2015) Non-isothermal pyrolysis of citrus unshiu peel. Bioenergy Res 8(1):431–439CrossRefGoogle Scholar
  13. 13.
    Özyurtkan MH, Özçimen D, Meriçboyu AE (2008) Investigation of the carbonization behavior of hybrid poplar. Fuel Process Technol 89(9):858–863CrossRefGoogle Scholar
  14. 14.
    Bird MI, Wurster CM, de Paula Silva PH, Bass AM, De Nys R (2011) Algal biochar—production and properties. Bioresour Technol 102(2):1886–1891CrossRefGoogle Scholar
  15. 15.
    Yanik J, Stahl R, Troeger N, Sinag A (2013) Pyrolysis of algal biomass. J Anal Appl Pyrolysis 103:134–141CrossRefGoogle Scholar
  16. 16.
    Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71(2):855–863CrossRefGoogle Scholar
  17. 17.
    Yang X, Wang X, Zhao B, Li Y (2014) Simulation model of pyrolysis biofuel yield based on algal components and pyrolysis kinetics. Bioenergy Res 7(4):1293–1304CrossRefGoogle Scholar
  18. 18.
    Radhakumari M, Prakash DJ, Satyavathi B (2016) Pyrolysis characteristics and kinetics of algal biomass using tga analysis based on ICTAC recommendations. Biomass Convers Biorefin 6(2):189–195CrossRefGoogle Scholar
  19. 19.
    Plis A, Lasek J, Skawińska A, Zuwała J (2015) Thermochemical and kinetic analysis of the pyrolysis process in Cladophora glomerata algae. J Anal Appl Pyrolysis 115:166–174CrossRefGoogle Scholar
  20. 20.
    Agrawal A, Chakraborty S (2013) A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol 128:72–80CrossRefGoogle Scholar
  21. 21.
    Tekindal MA, Bayrak H, Ozkaya B, Genç Y (2012) Box-Behnken experimental design in factorial experiments: the importance of bread for nutrition and health. Turk J Field Crops 17(2):115–123Google Scholar
  22. 22.
    Brassard P, Godbout S, Raghavan V, Palacios JH, Grenier M, Zegan D (2017) The production of engineered biochars in a vertical auger pyrolysis reactor for carbon sequestration. Energy 10(3):288Google Scholar
  23. 23.
    Koçer AT, Özçimen D (2018) Investigation of the biogas production potential from algal wastes. Waste Manag Res 36:1100–1105CrossRefGoogle Scholar
  24. 24.
    Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRefGoogle Scholar
  25. 25.
    Soxhlet F (1879) Die gewichtsaiialytische Bestimmung des Milchfettes; von. Polytechnology 232:461Google Scholar
  26. 26.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  27. 27.
    García R, Pizarro C, Lavín AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4CrossRefGoogle Scholar
  28. 28.
    Koçer AT, Mutlu B, Özçimen D (2016) Algal biochar production from macroalgal wastes. In: Eurasia 2016 Waste Management Symposium. pp 777–781Google Scholar
  29. 29.
    Keattch CJ (1969) An introduction to thermogravimetry. Heyden. Co-operation with Sadtler Research Laboratories, PhiladelphiaGoogle Scholar
  30. 30.
    Shih YF (2009) Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. J Polym Sci B Polym Phys 47(13):1231–1239CrossRefGoogle Scholar
  31. 31.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706CrossRefGoogle Scholar
  32. 32.
    Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886CrossRefGoogle Scholar
  33. 33.
    Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett 4(5):323–328CrossRefGoogle Scholar
  34. 34.
    Coats AW, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201(4914):68–69CrossRefGoogle Scholar
  35. 35.
    Özçimen D, İnan B, Akış S, Koçer AT (2015) Utilization alternatives of algal wastes for solid algal products. In: Algal biorefineries. Springer, pp 393–418Google Scholar
  36. 36.
    Kent M, Welladsen HM, Mangott A, Li Y (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One 10(2):e0118985CrossRefGoogle Scholar
  37. 37.
    Gibbons G, Goad L, Goodwin T (1968) The identification of 28-isofucosterol in the marine green algae Enteromorpha intestinalis and Ulva lactuca. Phytochem 7(6):983–988CrossRefGoogle Scholar
  38. 38.
    Karbowiak T, Ferret E, Debeaufort F, Voilley A, Cayot P (2011) Investigation of water transfer across thin layer biopolymer films by infrared spectroscopy. J Membr Sci 370(1–2):82–90CrossRefGoogle Scholar
  39. 39.
    Ponnuswamy I, Madhavan S, Shabudeen S (2013) Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production. Int J Bio-Sci Bio-Technol 5(2):17–25Google Scholar
  40. 40.
    Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, Nampoothiri KM (2015) Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT Food Sci Technol 64(2):1179–1186CrossRefGoogle Scholar
  41. 41.
    Liu Y, He Z, Uchimiya M (2015) Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Mod Appl Sci 9(4):246CrossRefGoogle Scholar
  42. 42.
    Major J, Steiner C, Downie A, Lehmann J (2012) Biochar effects on nutrient leaching. In: Biochar for environmental management. Routledge, pp 303–320Google Scholar
  43. 43.
    Zhao S-X, Ta N, Wang X-D (2017) Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energy 10(9):1293Google Scholar
  44. 44.
    Apaydın-Varol E, Pütün AE (2012) Preparation and characterization of pyrolytic chars from different biomass samples. J Anal Appl Pyrolysis 98:29–36CrossRefGoogle Scholar
  45. 45.
    Gülyurt MÖ, Özçimen D, Inan B  (2016) Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. Int J Mol Sci 17 (4):579CrossRefGoogle Scholar
  46. 46.
    Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, Gupta RB, Fasina O, Tu M, Fernando SD (2010) Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour Technol 101(21):8389–8395CrossRefGoogle Scholar
  47. 47.
    Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28(2):190–198CrossRefGoogle Scholar
  48. 48.
    Katyal S, Thambimuthu K, Valix M (2003) Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renew Energy 28(5):713–725CrossRefGoogle Scholar
  49. 49.
    Titiladunayo IF, McDonald AG, Fapetu OP (2012) Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valoriz 3(3):311–318CrossRefGoogle Scholar
  50. 50.
    Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobio 54(5–6):309–320CrossRefGoogle Scholar
  51. 51.
    Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA (2013) Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72CrossRefGoogle Scholar
  52. 52.
    Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544CrossRefGoogle Scholar
  53. 53.
    Karakaş C, Özçimen D, İnan B (2017) Potential use of olive stone biochar as a hydroponic growing medium. J Anal Appl Pyrolysis 125:17–23CrossRefGoogle Scholar
  54. 54.
    Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2012) Biochar production from freshwater algae by slow pyrolysis. Maejo Int J Sci Technol 6(2):186Google Scholar
  55. 55.
    Peng W, Wu Q, Tu P (2001) Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production. J Appl Phycol 13(1):5–12CrossRefGoogle Scholar
  56. 56.
    Chen C, Ma X, He Y (2012) Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour Technol 117:264–273CrossRefGoogle Scholar
  57. 57.
    Plis A, Lasek J, Skawińska A (2017) Kinetic analysis of the combustion process of Nannochloropsis gaditana microalgae based on thermogravimetric studies. J Anal Appl Pyrolysis 127:109–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemical and Metallurgical Engineering, Bioengineering DepartmentYıldız Technical UniversityIstanbulTurkey

Personalised recommendations