Skip to main content
Log in

Mesoporous silica–supported copper catalysts for dehydrogenation of biomass-derived 1,4-butanediol to gamma butyrolactone in a continuous process at atmospheric pressure

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A series of Cu/SBA-15 catalysts were prepared by wet impregnation method and tested for dehydrogenation of 1,4-butanediol (1,4-BDO) to γ-butyrolactone (GBL). As-synthesized catalysts were characterized by different techniques such as X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), N2 physisorption, N2O pulse chemisorption, and transmission electron microscopy (TEM) analysis. Among the series of Cu/SBA-15 catalysts, 10 wt% Cu/SBA-15 catalyst exhibited a complete conversion of 1,4-BDO with 98% selectivity to GBL. The superior catalytic performance of the 10 wt% Cu/SBA-15 catalyst was attributed to the well dispersion of Cu particles with much number of active metallic Cu sites over high surface area, SBA-15 support, and surface acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sudarsanam P, Zhong R, den Bosch SV, Coman SM, Parvulescu VI, Sels BF (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47:8349–8402

    Article  Google Scholar 

  2. Wang L, Xiao FS (2015) Nanoporous catalysts for biomass conversion. Green Chem 17:24–39

    Article  Google Scholar 

  3. Yim H, Haselbeck R, Van Dien S et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  Google Scholar 

  4. Yadagiri J, Puppala VS, Kannapu HPR, Vakati V, Koppadi KS, David Raju B, Rama Rao KS (2017) An inexpensive and environmentally friendly activated marble waste as a catalyst for vapour phase dehydration of 1,4-butanediol to tetrahydrofuran. Catal Commun 101:66–70

    Article  Google Scholar 

  5. Duan H, Hirota T, Ohtsuka S, Yamada Y, Sato S (2017) Vapor-phase catalytic dehydration of 1,4-butanediol to 3-buten-1-ol over modified ZrO 2 catalysts. Appl Catal A 535:9–16

    Article  Google Scholar 

  6. Minh DP, Besson M, Pinel C, Fuertes P, Petitjean C (2010) Aqueous-phase hydrogenation of biomass-based succinic acid to 1,4-butanediol over supported bimetallic catalysts. Top Catal 53:1270–1273

    Article  Google Scholar 

  7. Bellis HE, Del W (1992) US Pat, 5110954

  8. Suzuki S, Fujii T, Ueno H (1991) Tonen Corp EP507023-A

  9. Ichiki T, Mori K, Suzuki S, Ueno H, Kobayashi K (1993) Tonen Chemical Corp US5210229

  10. Chen J (2010) Basf catalysts Llc, US201021080A1

  11. Zu YL, Yang J, Dong GQ, Zheng HY, Zhang HH, Xiang HW, Li YW (2005) Appl Catal B Environ 57:183–190

    Article  Google Scholar 

  12. Hari Prasad Reddy K, Anand N, Sai Prasad PS, Rama Rao KS, David Raju B (2011) Influence of method of preparation of Co-Cu/MgO catalyst on dehydrogenation/dehydration reaction pathway of 1, 4-butanediol. Catal Commun 12:866–869

    Article  Google Scholar 

  13. Sigg R, Regner H (1995) US Patent No 5,426,195

  14. Aellig C, Jenny F, Scholz D, Wolf P, Giovinazzo I, Kollhoff F, Hermans I (2014) Combined 1,4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfural-derivatives under continuous flow conditions. Catal Sci Technol 4:2326–2331

    Article  Google Scholar 

  15. Nagaiah P, Rao MV, Thirupathaiah K, Venkateshwarlu V, Raju BD, Rao KSR (2018) Selective vapour phase dehydrogenation of biomass-derived 1,4-butanediol to gamma butyrolactone over Cu/ZrO2 catalysts: influence of La2O3 promotor. Res Chem Intermed 44:5817–5831

    Article  Google Scholar 

  16. Huang J, Dai WL, Li H, Fan K (2007) Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to γ-butyrolactone. J Catal 252:69–76

    Article  Google Scholar 

  17. LI X, Zheng J, Yang X, Dai WL, Li H, Fan K (2013) Preparation and application of highly efficient Au/SnO2 catalyst in the oxidative lactonization of 1,4-butanediol to γ-butyrolactone. Chin J Catal 34:1013–1019

    Article  Google Scholar 

  18. Newnham J, Mantri K, Amin M, Tardio J, Bhargava S (2012) Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane. Int J Hydrogen Energ 37:1454–1464

    Article  Google Scholar 

  19. Wang D, Wang X, Song C (2017) Comparative study of molecular basket sorbents consisting of polyallylamine and polyethylenimine functionalized SBA-15 for CO2 capture from flue gas. ChemPhysChem 18:3163–3173

    Article  Google Scholar 

  20. Ibrahim M, Akhtar M, Cejka J, Montanari E, Balcar H, Kubu M, Al-Khattaf S (2017) Metathesis of 2-pentene over Mo and W supported mesoporous molecular sieves MCM-41 and SBA-15. J Ind Eng Chem 53:119–126

    Article  Google Scholar 

  21. Guo J, Sotto A, Martin A, Kim J (2017) Preparation and characterization of polyethersulfone mixed matrix membranes embedded with Ti- or Zr-incorporated SBA-15 materials. J Ind Eng Chem 45:257–265

    Article  Google Scholar 

  22. Xu Q, Li X, Pan T, Yu C, Deng J, Guo Q, Fu Y (2016) Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chem 18:1287–1294

    Article  Google Scholar 

  23. Vargas-Hernandez D, Rubio-Caballero JM, Merida-Robles JM (2014) Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. J Mol Catal A Chem 383-384:106–113

    Article  Google Scholar 

  24. Sridevi B, Nagaiah P, Padmasri AH, David Raju B, Rama Rao KS (2017) Studies on dehydrogenation of cyclohexanol to cyclohexanone over mesoporous $$\text {SiO}_{2}$$ SiO 2 supported copper catalysts. J Chem Sci 129:601–608

    Article  Google Scholar 

  25. Xia Z, Liu H, Lu H, Zhang Z, Chen Y (2017) High selectivity of cyclohexane dehydrogenation for H2 evolution over Cu/SBA-15 catalyst. Catal Lett 147:1295–1302

    Article  Google Scholar 

  26. Chen CS, Lai YT, Lai TW, Wu JH, Chen CH, Lee JF, Kao HM (2013) Formation of Cu nanoparticles in SBA-15 functionalized with carboxylic acid groups and their application in the water–gas shift reaction. ACS Catal 3:667–677

    Article  Google Scholar 

  27. Ganji S, Bukya P, Vakati V, Rama Rao KS, Burri DR (2013) Highly efficient and expeditious PdO/SBA-15 catalysts for allylic oxidation of cyclohexene to cyclohexenone. Catal Sci Technol 3:409–414

    Article  Google Scholar 

  28. Narani A, Marella RK, Ramudu P, Rama Rao KS, Burri DR (2014) RSC Adv 4:3774–3781

    Article  Google Scholar 

  29. Mohan V, Pramod CV, Suresh M, Hari Prasad Reddy K, David Raju B, Rama Rao KS (2012) Advantage of Ni/SBA-15 catalyst over Ni/MgO catalyst in terms of catalyst stability due to release of water during nitrobenzene hydrogenation to aniline. Catal Commun 18:89–92

    Article  Google Scholar 

  30. Zhou CF, Wang YM, Yi C, Zhuang TT, Huang W, Chun Y et al (2006) Solvent-free surface functionalized SBA-15 as a versatile trap of nitrosamines. J Mater Chem 16:1520–1528

    Article  Google Scholar 

  31. Peddinti N, Venkata PC, Challa P, Burri DR, Rama Rao KS (2018) Vapor phase selective production of ethyl lactate over ZrO2-SiO2 catalysts using lactic acid and ethanol. ChemistrySelect 3:10843–10848

    Article  Google Scholar 

  32. Neeli CKP, Narani A, Marella RK, Rama Rao KS, David Raju B (2013) Selective benzylic oxidation of alkylaromatics over Cu/SBA-15 catalysts under solvent-free conditions. Catal Commun 39:5–9

    Article  Google Scholar 

  33. Saidulu G, Anand N, Rao KSR, Park SE, Burri DR (2011) Cu/SBA-15 is an efficient solvent-free and acid-free catalyst for the rearrangement of benzaldoxime into benzamide. Catal Lett 141:1865–1871

    Article  Google Scholar 

  34. Nagaiah P, Pramod CV, Rao MV, Raju BD, Rao KSR (2018) Product selectivity as a function of ZrO2 phase in Cu/ZrO2 catalysts in the conversion of cyclohexanol. Catal Lett 148:3042–3050

    Article  Google Scholar 

  35. Sharma RV, Soni KK, Dalai AK (2012) Preparation, characterization and application of sulfated Ti-SBA-15 catalyst for oxidation of benzyl alcohol to benzaldehyde. Catal Commun 29:87–91

    Article  Google Scholar 

  36. Ichikawa N, Sato S, Takahashi R, Sodesawa T, Inui K (2004) Dehydrogenative cyclization of 1,4-butanediol over copper-based catalyst. J Mol Catal 212:197–203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Rama Rao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, M.A., Gidyonu, P., Nagaiah, P. et al. Mesoporous silica–supported copper catalysts for dehydrogenation of biomass-derived 1,4-butanediol to gamma butyrolactone in a continuous process at atmospheric pressure. Biomass Conv. Bioref. 9, 719–726 (2019). https://doi.org/10.1007/s13399-019-00406-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00406-4

Keywords

Navigation