Skip to main content
Log in

Hydrothermal conversion of wood, organosolv, and chlorite pulps

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this work, beech wood has been submitted to fractionation and hydrothermal liquefaction in order to produce fermentable carbohydrates. Fractionation either by ethanol organosolv or by sodium chlorite/acetic acid (SC/AA) treatment allowed obtaining delignification yields of 50 and 91 wt.% respectively. The recovered pulps were then submitted to liquefaction in hot-compressed water (HCW). Three temperatures were studied: 180, 200, and 220 °C during 2 h. The same experiments were conducted on untreated beech and model cellulose (Avicel PH-101). Product yields and total carbohydrates were determined. The liquefaction products, i.e., solid residue, water-soluble compounds, and permanent gas, were analyzed respectively by X-ray diffraction (XRD), high-performance anion-exchange chromatography with pulsed amperometric detector (HPAEC-PAD), and gas chromatography (GC). SC/AA treatment allowed a high recovery of hemicelluloses and for this reason, xylose content was significantly higher than for the organosolv pulp. The maximum yields of total carbohydrates (based on the initial carbohydrates in wood), found when the liquefaction temperature was 220 °C, increased from 9.0 wt.% for the raw beech to 13.5 and 33.7 wt.% for the organosolv and SC/AA pulps respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. https://doi.org/10.1126/science.1114736

    Article  Google Scholar 

  2. Morone A, Pandey RA (2014) Lignocellulosic biobutanol production: gridlocks and potential remedies. Renew Sust Energ Rev 37:21–35. https://doi.org/10.1016/j.rser.2014.05.009

    Article  Google Scholar 

  3. Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Bior 4:157–191. https://doi.org/10.1007/s13399-013-0097-z

    Article  Google Scholar 

  4. Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus × giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334. https://doi.org/10.1021/ie9006672

    Article  Google Scholar 

  5. Mante OD, Amidon TE, Stipanovic A, Babu SP (2014) Integration of biomass pretreatment with fast pyrolysis: an evaluation of electron beam (EB) irradiation and hot-water extraction (HWE). J Anal Appl Pyrolysis 110:44–54. https://doi.org/10.1016/j.jaap.2014.08.004

    Article  Google Scholar 

  6. Win NN, Weinwurm F, Friedl A (2016) Investigation of organosolv and hot-compressed water pretreatments of rice straw. Biomass Convers Bior 6:355–364. https://doi.org/10.1007/s13399-015-0188-0

    Article  Google Scholar 

  7. Qureshi N, Bowman MJ, Saha BC, Hector R, Berhow MA, Cotta MA (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90:533–540. https://doi.org/10.1016/j.fbp.2011.09.002

    Article  Google Scholar 

  8. Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Bior 3:199–212. https://doi.org/10.1007/s13399-013-0074-6

    Article  Google Scholar 

  9. Hosseinaei O, Harper DP, Bozell JJ, Rials TG (2016) Role of physicochemical structure of organosolv hardwood and herbaceous lignins on carbon fiber performance. ACS Sustain Chem Eng 4:5785–5798. https://doi.org/10.1021/acssuschemeng.6b01828

    Article  Google Scholar 

  10. Bär J, Phongpreecha T, Singh SK, Kral Yilmaz M, Foster CE, Crowe JD, Hodge DB (2018) Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation. Biomass Convers Bior 8:813–824. https://doi.org/10.1007/s13399-018-0330-x

    Article  Google Scholar 

  11. da Silva ARG, Errico M, Rong B-G (2018) Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass: solvent recycle and process integration. Biomass Convers Bior 8:397–411. https://doi.org/10.1007/s13399-017-0292-4

    Article  Google Scholar 

  12. Siqueira G, Várnai A, Ferraz A, Milagres AMF (2013) Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl Energy 102:399–402. https://doi.org/10.1016/j.apenergy.2012.07.029

    Article  Google Scholar 

  13. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327. https://doi.org/10.1039/B601395C

    Article  Google Scholar 

  14. Katahira R, Mittal A, McKinney K, Ciesielski PN, Donohoe BS, Black SK, Johnson DK, Biddy MJ, Beckham GT (2014) Evaluation of clean fractionation pretreatment for the production of renewable fuels and chemicals from corn stover. ACS Sustain Chem Eng 2:1364–1376. https://doi.org/10.1021/sc5001258

    Article  Google Scholar 

  15. Kurian JK, Nair GR, Gariepy Y, Orsat V, Lefsrud M, Yaylayan V, Raghavan GSV (2016) Experimental investigation of a sequential process for the fractionation of sweet sorghum bagasse. Biomass Convers Bior 6:1–11. https://doi.org/10.1007/s13399-015-0161-y

    Article  Google Scholar 

  16. Liu Q, Lu Y, Aguedo M et al (2017) Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain Chem Eng 5:6183–6191. https://doi.org/10.1021/acssuschemeng.7b01108

    Article  Google Scholar 

  17. Viell J, Harwardt A, Seiler J, Marquardt W (2013) Is biomass fractionation by organosolv-like processes economically viable? A conceptual design study. Bioresour Technol 150:89–97. https://doi.org/10.1016/j.biortech.2013.09.078

    Article  Google Scholar 

  18. Yuan T-Q, Xu F, Sun R-C (2013) Role of lignin in a biorefinery: separation characterization and valorization. J Chem Technol Biotechnol 88:346–352. https://doi.org/10.1002/jctb.3996

    Article  Google Scholar 

  19. Galkin MV, Samec JSM (2016) Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. Chemsuschem 9:1544–1558. https://doi.org/10.1002/cssc.201600237

    Article  Google Scholar 

  20. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24. https://doi.org/10.1016/S0960-8524(99)00160-1

    Article  Google Scholar 

  21. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  22. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861. https://doi.org/10.1002/bit.20905

    Article  Google Scholar 

  23. Brilman DWF, Drabik N, Wądrzyk M (2017) Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Convers Bior 7:445–454. https://doi.org/10.1007/s13399-017-0241-2

    Article  Google Scholar 

  24. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal, Jr MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65. https://doi.org/10.1039/B810100K

  25. Abdullah R, Ueda K, Saka S (2014) Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water. J Wood Sci 60:278–286. https://doi.org/10.1007/s10086-014-1401-7

    Article  Google Scholar 

  26. Tolonen LK, Juvonen M, Niemelä K, Mikkelson A, Tenkanen M, Sixta H (2015) Supercritical water treatment for cello-oligosaccharide production from microcrystalline cellulose. Carbohydr Res 401:16–23. https://doi.org/10.1016/j.carres.2014.10.012

    Article  Google Scholar 

  27. Sintamarean IM, Grigoras IF, Jensen CU, Toor SS, Pedersen TH, Rosendahl LA (2017) Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale system. Biomass Convers Bior 7:425–435. https://doi.org/10.1007/s13399-017-0247-9

    Article  Google Scholar 

  28. Buendia-Kandia F, Mauviel G, Guedon E, Rondags E, Petitjean D, Dufour A (2017) Decomposition of cellulose in hot-compressed water: detailed analysis of the products and effect of operating conditions. Energy Fuel 32:4127–4138. https://doi.org/10.1021/acs.energyfuels.7b02994

    Article  Google Scholar 

  29. Sluiter A, Hames B, Ruiz R, et al (2012) NREL-determination of structural carbohydrates and lignin in biomass

  30. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  31. van de Wiel HJ (2003) Determination of elements by ICP-AES and ICP-MS. Natl Inst Public Health Environ RIVM Bilthoven Neth 1–19

  32. Nhuchhen DR, Basu P, Acharya B (2014) A comprehensive review on biomass torrefaction. In: IBIMA Publ. http://ibimapublishing.com/articles/IJREB/2014/506376/. Accessed 19 Oct 2017

  33. Yu Z, Jameel H, Chang H, Park S (2011) The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol 102:9083–9089. https://doi.org/10.1016/j.biortech.2011.07.001

    Article  Google Scholar 

  34. Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2:55–65. https://doi.org/10.1089/ind.2006.2.55

    Article  Google Scholar 

  35. Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2009) Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production. J Agric Food Chem 57:1275–1281. https://doi.org/10.1021/jf8030277

    Article  Google Scholar 

  36. Hubbell CA, Ragauskas AJ (2010) Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour Technol 101:7410–7415. https://doi.org/10.1016/j.biortech.2010.04.029

    Article  Google Scholar 

  37. Campbell WG, McDonald IRC (1952) The chemistry of the wood cell wall. Part I. The delignification of beech and spruce woods by sodium chlorite in buffered aqueous solution. J Chem Soc Resumed:2644–2650. https://doi.org/10.1039/JR9520002644

  38. Ahlgren PA, Goring DAI (1971) Removal of wood components during chlorite delignification of black spruce. Can J Chem 49:1272–1275. https://doi.org/10.1139/v71-207

    Article  Google Scholar 

  39. Mukarakate C, Mittal A, Ciesielski PN, Budhi S, Thompson L, Iisa K, Nimlos MR, Donohoe BS (2016) Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis. ACS Sustain Chem Eng 4:4662–4674. https://doi.org/10.1021/acssuschemeng.6b00812

    Article  Google Scholar 

  40. Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167. https://doi.org/10.1023/B:CELL.0000025423.32330.fa

    Article  Google Scholar 

  41. Yu Y, Wu H (2010) Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 49:3902–3909. https://doi.org/10.1021/ie901925g

    Article  Google Scholar 

  42. Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res 51:9023–9031. https://doi.org/10.1021/ie300565d

    Article  Google Scholar 

  43. Guo S, Dong X, Wu T, Shi F, Zhu C (2015) Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk. J Anal Appl Pyrolysis 116:1–9. https://doi.org/10.1016/j.jaap.2015.10.015

    Article  Google Scholar 

  44. Rover MR, Johnston PA, Lamsal BP, Brown RC (2013) Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay. J Anal Appl Pyrolysis 104:194–201. https://doi.org/10.1016/j.jaap.2013.08.004

    Article  Google Scholar 

  45. Yu Y, Wu H (2010) Evolution of primary liquid products and evidence of in situ structural changes in cellulose with conversion during hydrolysis in hot-compressed water. Ind Eng Chem Res 49:3919–3925. https://doi.org/10.1021/ie902020t

    Article  Google Scholar 

  46. Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38:2888–2895. https://doi.org/10.1021/ie9806390

    Article  Google Scholar 

  47. Shafizadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23:3525–3539. https://doi.org/10.1002/app.1979.070231209

    Article  Google Scholar 

  48. Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–32. https://doi.org/10.1016/j.jaap.2011.12.019

    Article  Google Scholar 

  49. Kitamura Y, Abe Y, Yasui T (1991) Metabolism of levoglucosan (1, 6-anhydro-α-d-glucopyranose) in microorganisms. Agric Biol Chem 55:515–521

    Google Scholar 

  50. Prosen EM, Radlein D, Piskorz J, et al (1993) Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol Bioeng USA 42(4):538–541

    Article  Google Scholar 

  51. Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol 102:8318–8322. https://doi.org/10.1016/j.biortech.2011.06.011

    Article  Google Scholar 

  52. Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M (2015) A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol 35:342–354. https://doi.org/10.3109/07388551.2013.878896

    Article  Google Scholar 

  53. Gao K, Rehmann L (2016) Combined detoxification and in-situ product removal by a single resin during lignocellulosic butanol production. Sci Rep 6:srep30533. https://doi.org/10.1038/srep30533

    Article  Google Scholar 

  54. Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. New Biotechnol 29:345–351. https://doi.org/10.1016/j.nbt.2011.09.001

    Article  Google Scholar 

  55. Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13:261–268. https://doi.org/10.1016/S0896-8446(98)00060-6

    Article  Google Scholar 

  56. Raganati F, Olivieri G, Götz P, Marzocchella A, Salatino P (2015) Butanol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum. Anaerobe 34:146–155. https://doi.org/10.1016/j.anaerobe.2015.05.008

    Article  Google Scholar 

  57. Buendia-Kandia F, Rondags E, Framboisier X, et al (2018) Diauxic growth of Clostridium acetobutylicum ATCC 824 when grown on mixtures of glucose and cellobiose, representative of cellulose hydrolysis products. submitted

Download references

Acknowledgements

The authors thank Hélène Lichère for her kind assistance in some analytical methods and the members of the LERMAB for providing the beech wood.

Funding

This study was financially supported by the ICEEL Carnot and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Dufour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buendia-Kandia, F., Brosse, N., Petitjean, D. et al. Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Conv. Bioref. 10, 1–13 (2020). https://doi.org/10.1007/s13399-019-00395-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00395-4

Keywords

Navigation