Skip to main content

Advertisement

Log in

Bioenergy derived from an organically fertilized poplar plot: overall TGA and index estimation study for combustion, gasification, and pyrolysis processes

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Energy derived from biomass is, nowadays, one of the most attractive options to mitigate fossil fuel use. In this study, an organically fertilized poplar plot was employed. The goals of this work were, in the first place, to analyze the thermal behavior of the samples considering three thermal processes: combustion, gasification, and pyrolysis to, finally, try to determine the influence of the poplar clone and the subscriber type about this parameter. For these purposes, thermogravimetric analysis (TGA) together with kinetic parameters and thermal indexes was used. In the same way, fuel properties were determined. Hence, having average higher heating value around 20 MJ/kg and other accurate properties, poplar samples were considered as a fuel with optimal properties. TGA profiles were different for the thermal processes compared. Four different emission stages appeared for both combustion and gasification (moisture, hemicellulose, cellulose, and lignin). However, pyrolysis profiles showed a different pattern. Thermal index results were higher for the combustion than for the rest of the processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Basu P (2018) Biomass gasification, pyrolysis, and torrefaction: practical design and theory. Academic press

  2. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189. https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  3. Khalil EE (2012) The role of solar and other renewable energy sources on the strategic energy planning: Africa’s status & views. ASHRAE Trans 118:64

    Google Scholar 

  4. Bhattacharya SC, Salam PA, Pham HL, Ravindranath NH (2003) Sustainable biomass production for energy in selected Asian countries. Biomass Bioenergy 25:471–482. https://doi.org/10.1016/S0961-9534(03)00085-0

    Article  Google Scholar 

  5. Chinnici G, D’Amico M, Rizzo M, Pecorino B (2015) Analysis of biomass availability for energy use in Sicily. Renew Sust Energ Rev 52:1025–1030. https://doi.org/10.1016/j.rser.2015.07.174

    Article  Google Scholar 

  6. Koppejan J, Van Loo S (2012) Biomass fuel supply and pre-treatment. The Handbook of Biomass Combustion and Co-firing, In

    Google Scholar 

  7. Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci U S A 108:4307–4312. https://doi.org/10.1073/pnas.1008779108

    Article  Google Scholar 

  8. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210. https://doi.org/10.1073/pnas.0604600103

    Article  Google Scholar 

  9. Narayan R (2006) Rationale, drivers, standards, and technology for biobased materials. Renew Resour renew energy—a glob Chall 1208863900:

  10. Teske S, Muth J, Sawyer S et al (2012) Energy [r] evolution-a sustainable world energy outlook. Greenpeace International, EREC and GWEC

    Google Scholar 

  11. Silva TCF, Santos RB, Jameel H, Colodette JL, Lucia LA (2012) Quantitative molecular structure–pyrolytic energy correlation for hardwood lignins. Energy Fuel 26:1315–1322. https://doi.org/10.1021/ef2014869

    Article  Google Scholar 

  12. Karampinis E, Vamvuka D, Sfakiotakis S, Grammelis P, Itskos G, Kakaras E (2012) Comparative study of combustion properties of five energy crops and Greek lignite. Energy Fuel 26:869–878. https://doi.org/10.1021/ef2014088

    Article  Google Scholar 

  13. Nordborg M, Berndes G, Dimitriou I, Henriksson A, Mola-Yudego B, Rosenqvist H (2018) Energy analysis of willow production for bioenergy in Sweden. Renew Sust Energ Rev 93:473–482. https://doi.org/10.1016/j.rser.2018.05.045

    Article  Google Scholar 

  14. Al Afas N, Marron N, Van Dongen S et al (2008) Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). For Ecol Manag 255:1883–1891

    Article  Google Scholar 

  15. Mantineo M, D’Agosta GM, Copani V, Patanè C, Cosentino SL (2009) Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. F Crop Res 114:204–213. https://doi.org/10.1016/J.FCR.2009.07.020

    Article  Google Scholar 

  16. Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of short rotation coppice (SRC) for increased bioenergy production—biological and economic potential. Biomass Bioenergy 35:835–842. https://doi.org/10.1016/j.biombioe.2010.11.010

    Article  Google Scholar 

  17. Marron N (2015) Agronomic and environmental effects of land application of residues in short-rotation tree plantations: a literature review. Biomass Bioenergy 81:378–400. https://doi.org/10.1016/j.biombioe.2015.07.025

    Article  Google Scholar 

  18. Lafleur B, Thiffault E, Paré D, Camiré C, Bernier-Cardou M, Masse S (2012) Effects of hog manure application on the nutrition and growth of hybrid poplar (Populus spp.) and on soil solution chemistry in short-rotation woody crops. Agric Ecosyst Environ 155:95–104. https://doi.org/10.1016/j.agee.2012.04.002

    Article  Google Scholar 

  19. Paniagua S, Escudero L, Escapa C, Coimbra RN, Otero M, Calvo LF (2016) Effect of waste organic amendments on Populus sp biomass production and thermal characteristics. Renew Energy 94:166–174. https://doi.org/10.1016/j.renene.2016.03.019

    Article  Google Scholar 

  20. Paniagua S, Escudero L, Coimbra RN, Escapa C, Otero M, Calvo LF (2018) Effect of applying organic amendments on the pyrolytic behavior of a poplar energy crop. Waste Biomass Valorization 9:1435–1449. https://doi.org/10.1007/s12649-017-9885-1

    Article  Google Scholar 

  21. Wang C, Wang F, Yang Q, Liang R (2009) Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy 33:50–56. https://doi.org/10.1016/J.BIOMBIOE.2008.04.013

    Article  Google Scholar 

  22. Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy 32:649–661. https://doi.org/10.1016/j.renene.2006.02.017

    Article  Google Scholar 

  23. Lv D, Xu M, Liu X, Zhan Z, Li Z, Yao H (2010) Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol 91:903–909. https://doi.org/10.1016/j.fuproc.2009.09.014

    Article  Google Scholar 

  24. Sharp J (2017) Reaction kinetics in differential thermal analysis, vol II, chapter 28, 47-77, 1972, Ed. R C Mackenzie, Academic Press, London

  25. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. In: journal of polymer science: polymer symposia. Wiley online library, pp 183–195

  26. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett 4:323–328

    Article  Google Scholar 

  27. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  Google Scholar 

  28. Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31

    Google Scholar 

  29. Burnham AK, Dinh LN (2007) A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim 89:479–490

    Article  Google Scholar 

  30. Budrugeac P (2002) Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim 68:131–139

    Article  Google Scholar 

  31. Paniagua S, Escudero L, Escapa C, Coimbra RN, Otero M, Calvo LF (2016) Effect of waste organic amendments on Populus sp biomass production and thermal characteristics. Renew Energy 94:166–174. https://doi.org/10.1016/j.renene.2016.03.019

    Article  Google Scholar 

  32. Aenor (2018) UNE-EN ISO 18135:2018 . Biocombustibles sólidos. Muestreo

  33. Evans A, Strezov V, Evans TJ (2010) Sustainability considerations for electricity generation from biomass. Renew Sust Energ Rev 14:1419–1427. https://doi.org/10.1016/j.rser.2010.01.010

    Article  Google Scholar 

  34. Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR (2004) Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 26:171–193

    Article  Google Scholar 

  35. Liu R, Morrell JJ, Yan L (2018) Thermogravimetric analysis studies of thermally-treated glycerol impregnated poplar wood. BioResources 13:1563–1575

    Google Scholar 

  36. Özsin G, Pütün AE (2017) Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: thermochemical behaviors, kinetics and evolved gas analysis. Energy Convers Manag 149:675–685 https://doi.org/10.1016/J.ENCONMAN.2017.07.059

    Article  Google Scholar 

  37. Soria-Verdugo A, Goos E, García-Hernando N (2015) Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the distributed activation energy model. Fuel Process Technol 134:360–371. https://doi.org/10.1016/J.FUPROC.2015.02.018

    Article  Google Scholar 

  38. Coats AW, Redfern JP (1963) Thermogravimetric analysis. A Review Analyst 88:906–924

    Article  Google Scholar 

  39. Thengane SK, Gupta A, Mahajani SM (2019) Co-gasification of high ash biomass and high ash coal in downdraft gasifier. Bioresour Technol 273:159–168. https://doi.org/10.1016/J.BIORTECH.2018.11.007

    Article  Google Scholar 

  40. Chen S, Meng A, Long Y, Zhou H, Li Q, Zhang Y (2015) TGA pyrolysis and gasification of combustible municipal solid waste. J Energy Inst 88:332–343. https://doi.org/10.1016/J.JOEI.2014.07.007

    Article  Google Scholar 

  41. Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581

    Article  Google Scholar 

  42. Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol 100:292–298. https://doi.org/10.1016/j.biortech.2008.06.009

    Article  Google Scholar 

  43. Yang H, Yan R, Chin T, Liang DT, Chen H, Zheng C (2004) Thermogravimetric analysis− Fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuel 18:1814–1821

    Article  Google Scholar 

  44. Parthasarathy P, Narayanan KS, Arockiam L (2013) Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass Bioenergy 58:58–66

    Article  Google Scholar 

  45. Xiang Y, Xiang Y, Wang L (2016) Thermal decomposition kinetic of hybrid poplar sawdust as biomass to biofuel. J Environ Chem Eng 4:3303–3308

    Article  Google Scholar 

  46. Paniagua S, Calvo LF, Escapa C, Coimbra RN, Otero M, García AI (2017) Chlorella sorokiniana thermogravimetric analysis and combustion characteristic indexes estimation. J Therm Anal Calorim 131:3139–3149. https://doi.org/10.1007/s10973-017-6734-1

    Article  Google Scholar 

  47. Basu P (2010) Biomass characteristics. Biomass Gasif Pyrolysis:27–63. https://doi.org/10.1016/B978-0-12-374988-8.00002-7

    Chapter  Google Scholar 

  48. Liu Y, Cao X, Duan X, Wang Y, Che D (2018) Thermal analysis on combustion characteristics of predried dyeing sludge. Appl Therm Eng 140:158–165. https://doi.org/10.1016/J.APPLTHERMALENG.2018.05.055

    Article  Google Scholar 

  49. Zhao P, Ge S, Yoshikawa K (2013) An orthogonal experimental study on solid fuel production from sewage sludge by employing steam explosion. Appl Energy 112:1213–1221. https://doi.org/10.1016/J.APENERGY.2013.02.026

    Article  Google Scholar 

  50. Junlin X (1998) Catalyzed combustion study of study of anthracite in cement kiln. J Chin Ceram Soc 26:792–795

    Google Scholar 

  51. Lamerre J, Schwarz K-U, Langhof M et al (2015) Productivity of poplar short rotation coppice in an alley-cropping agroforestry system. Agrofor Syst:1–10. https://doi.org/10.1007/s10457-015-9825-7

    Article  Google Scholar 

  52. Swamy SL, Mishra A, Puri S (2006) Comparison of growth, biomass and nutrient distribution in five promising clones of Populus deltoides under an agrisilviculture system. Bioresour Technol 97:57–68. https://doi.org/10.1016/j.biortech.2005.02.032

    Article  Google Scholar 

  53. García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258

    Article  Google Scholar 

  54. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energ Rev 14:2841–2851

    Article  Google Scholar 

  55. Park Y-H, Kim J, Kim S-S, Park Y-K (2009) Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. Bioresour Technol 100:400–405. https://doi.org/10.1016/j.biortech.2008.06.040

    Article  Google Scholar 

  56. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F (2010) Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol 101:5601–5608. https://doi.org/10.1016/j.biortech.2010.02.008

    Article  Google Scholar 

  57. Jenkins BM, Baxter LL, Miles TR, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. https://doi.org/10.1016/S0378-3820(97)00059-3

    Article  Google Scholar 

  58. Miranda MT, Arranz JI, Rojas S, Montero I (2009) Energetic characterization of densified residues from Pyrenean oak forest. Fuel 88:2106–2112. https://doi.org/10.1016/J.FUEL.2009.05.015

    Article  Google Scholar 

  59. Tortosa Masiá AA, Buhre BJP, Gupta RP, Wall TF (2007) Characterising ash of biomass and waste. Fuel Process Technol 88:1071–1081. https://doi.org/10.1016/J.FUPROC.2007.06.011

    Article  Google Scholar 

  60. Niksa S (2019) Predicting ultimate soot yields from any coal. Proc Combust Inst 37:2757–2764. https://doi.org/10.1016/J.PROCI.2018.06.061

    Article  Google Scholar 

  61. Jayaraman K, Kok MV, Gokalp I (2017) Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renew Energy 101:293–300. https://doi.org/10.1016/J.RENENE.2016.08.072

    Article  Google Scholar 

  62. Chelgani SC, Hower JC, Jorjani E, Mesroghli S, Bagherieh AH (2008) Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models. Fuel Process Technol 89:13–20. https://doi.org/10.1016/J.FUPROC.2007.06.004

    Article  Google Scholar 

  63. Niu D, Song Z, Xiao X (2017) Electric power substitution for coal in China: status quo and SWOT analysis. Renew Sust Energ Rev 70:610–622. https://doi.org/10.1016/j.rser.2016.12.092

    Article  Google Scholar 

  64. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289. https://doi.org/10.1016/j.rser.2011.02.015

    Article  Google Scholar 

  65. Tillman D (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19:365–384. https://doi.org/10.1016/S0961-9534(00)00049-0

    Article  Google Scholar 

  66. Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201. https://doi.org/10.1016/J.BIORTECH.2013.08.135

    Article  Google Scholar 

  67. Saeed MA, Anez NF, Andrews GE, Phylaktou HN, Gibbs BM (2017) Steam exploded pine wood burning properties with particle size dependence. Fuel 194:527–532. https://doi.org/10.1016/J.FUEL.2017.01.028

    Article  Google Scholar 

  68. García R, Pizarro C, Lavín AG, Bueno JL (2014) Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel 117:1139–1147. https://doi.org/10.1016/J.FUEL.2013.08.049

    Article  Google Scholar 

  69. Guerrero M, Ruiz MP, Alzueta MU, Bilbao R, Millera A (2005) Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. J Anal Appl Pyrolysis 74:307–314. https://doi.org/10.1016/J.JAAP.2004.12.008

    Article  Google Scholar 

  70. Bouraoui Z, Jeguirim M, Guizani C, Limousy L, Dupont C, Gadiou R (2015) Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity. Energy 88:703–710. https://doi.org/10.1016/j.energy.2015.05.100

    Article  Google Scholar 

  71. Paniagua S, Escudero L, Coimbra RN, Escapa C, Otero M, Calvo LF (2017) Effect of applying organic amendments on the pyrolytic behavior of a poplar energy crop. Waste and Biomass Valorization 9:1435–1449. https://doi.org/10.1007/s12649-017-9885-1

    Article  Google Scholar 

  72. Parshetti GK, Quek A, Betha R, Balasubramanian R (2014) TGA–FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal. Fuel Process Technol 118:228–234

    Article  Google Scholar 

Download references

Funding

Authors would like to thank funding given by the Junta de Castilla y León (Project LE129A11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Fernando Calvo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paniagua, S., Prado-Guerra, A., García, A.I. et al. Bioenergy derived from an organically fertilized poplar plot: overall TGA and index estimation study for combustion, gasification, and pyrolysis processes. Biomass Conv. Bioref. 9, 749–760 (2019). https://doi.org/10.1007/s13399-019-00392-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00392-7

Keywords

Navigation