Biogas generation from by-products of edible oil processing: a review of opportunities, challenges and strategies

Abstract

Edible oil processing by-products can be used to produce a renewable fuel called biogas through anaerobic digestion technology. In this process, the physicochemical characteristics of the substrates dictate the process conditions, stability and microbial profile. All these, in turn, affect the overall digester design and operational efficiency. Most edible oil processing by-products tend to exhibit comparatively similar physicochemical properties, allowing for echo studies to be conducted on them. Naturally, residual fats and oils in edible oil by-products should induce high methane production potential. However, this does not occur without certain drawbacks. In this work, a review is conducted on biogas systems that use edible oil processing by-products as substrates for anaerobic digestion. Anaerobic digestion opportunities and challenges associated with these substrates are identified by analysis of factors that affect anaerobic digestion. The factors are scrutinised under different sub-headings, viz., substrate physicochemical composition, process conditions and parameters. Knowledge gaps are identified. Additionally, strategies for resolving some of the highlighted challenges while leveraging opportunities identified are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1

Abbreviations

AD:

Anaerobic digestion

TS:

Total solids

RBDW:

Refined, bleached, deodorised and winterised

VS:

Volatile solids

COD:

Chemical oxygen demand

BOD:

Biological oxygen demand

BMP:

Biomethane potential

n.d.:

No data

OFC:

Organic fraction composition

HRT:

Hydraulic retention time

OLR:

Organic loading rate

SRT:

Solids retention time

VFA:

Volatile fatty acids

POME:

Palm oil mill effluent

OMWW:

Olive mill waste water

OMSW:

Olive mill solid waste

FA:

Fatty acid

LCFA:

Long-chain fatty acids

SCFA:

Short-chain fatty acids

AnCod:

Anaerobic codigestion

ORP:

Oxidation/reduction potential

EGSB:

Expanded granular suspended bed

LPM:

Liquid poultry manure

FOG:

Fats, oils and grease

UASB:

Upflow anaerobic sludge blanket

IASB:

Inverted anaerobic sludge blanket

UASFF:

Upflow anaerobic sludge fixed film

CSTR:

Continuously stirred tank reactor

TAN:

Total ammonia nitrogen

TCOD:

Total chemical oxygen demand

CW:

Cheese whey

AMPTSII:

Automatic methane potential testing system version II

References

  1. 1.

    International Finance Corporation (2015) Environmental, health and safety guidelines for vegetable oil production and processing. In: World Bank Gr. www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/sustainability-at-ifc/publications/publications_policy_ehs_vegetable_oil. Accessed 23 Aug 2018

  2. 2.

    Steffen Robertson & Kirsten Inc Consulting Engineers (1989) Waste-water management in the edible oil industry. Pretoria

  3. 3.

    McDermott G (1976) Liquid waste treatment in the vegetable oil processing industry - U.S practices. J Am Oil Chem Soc 53:446–448

    Google Scholar 

  4. 4.

    Muezzinoglu A, Azbar N, Bayram A et al (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34:209–247

    Google Scholar 

  5. 5.

    von Sperling M, Chernicharo CAL (2005) Biological wastewater treatment in warm climate regions, 1st edn. IWA Publishing, London

    Google Scholar 

  6. 6.

    Muzaffar AM, Hussain A, Verma C (2016) Design considerations and operational performance of anaerobic digester: a review. Cogent Eng 3:1–20

    Google Scholar 

  7. 7.

    Olisa YP, Kotingo KW (2014) Utilization of palm empty fruit bunch (PEFB) as solid fuel for steam boiler. Eur J Eng Technol 2:1–7

    Google Scholar 

  8. 8.

    Asthana AK (2009) Biomass as fuel in small boilers. 1–52

  9. 9.

    Skenjana A, van Ryssen JBJ, van Niekerk WA (2006) In vitro digestibility and in situ degradability of avocado meal and macadamia waste products in sheep. South African J Anim Sci 36:78–81

    Google Scholar 

  10. 10.

    Vânia de Sousa LA, Leilane Rocha BD, Joao Batista L et al (2016) Cottonseed oil in diets for growing broilers. Rev Bras Zootec 45:208–218

    Google Scholar 

  11. 11.

    Rodrigues CEC, Navarro SLB (2016) Macadamia oil extraction methods and uses for the defatted meal byproduct. Trends Food Sci Technol 54:148–154

    Google Scholar 

  12. 12.

    de Gleidson Giordano PC, Silva RVMM, Pires AJV et al (2016) Cottonseed cake in substitution of soybean meal in diets for finishing lambs. Small Rumin Res 137:183–188

    Google Scholar 

  13. 13.

    Woolf A, Wong M, Eyres L et al (2009) Avocado Oil. In: Moreau AR, Kamal-Eldin A (eds) Gourmet and health-promoting specialty oils. AOCS Press, Urbana-Illinos, pp 73–125

    Google Scholar 

  14. 14.

    Ahmad A, Ghufran R, Zularisam AW (2011) Bioenergy from anaerobic degradation of lipids in palm oil mill effluent. Rev Environ Sci Biotechnol 10:353–376

    Google Scholar 

  15. 15.

    Rodríguez L, Preston TR (1996) Use of effluent from low-cost plastic biodigesters as fertilizer for duck weed ponds. Livest Res Rural Dev 8:1–9

    Google Scholar 

  16. 16.

    Thenabadu M (2015) Anaerobic digestion of food and market waste; waste characterisation, biomethane potential and bio reactor design: a case study in Sri Lanka. University of Gavile

  17. 17.

    Seadi TA, Rutz D, Prassl H et al (2008) Biogas handbook. University of Southern Denmark Esbjerg, Denmark

    Google Scholar 

  18. 18.

    Balasubramanian PR, Bai RK (1994) Biogas-plant effluent as an organic fertiliser in fish polyculture. Bioresour Technol 50:189–192

    Google Scholar 

  19. 19.

    Azbar N, Keskin T, Yuruyen A (2008) Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass Bioenergy 32:1195–1201

    Google Scholar 

  20. 20.

    Tamkin A, Martin J, Castano J et al (2015) Impact of organic loading rates on the performance of variable temperature biodigesters. Ecol Eng 78:87–94

    Google Scholar 

  21. 21.

    Arikan OA, Walter M, Lansing S (2015) Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure. Waste Manag 43:108–113

    Google Scholar 

  22. 22.

    Noike T, Lay J-J, Li Y-Y (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31:1518–1524

    Google Scholar 

  23. 23.

    Ohimain EI, Izah SC (2016) A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew Sust Energ Rev 70:242–253

    Google Scholar 

  24. 24.

    Ng WJ, Maspolim Y, Zhou Y et al (2015) Comparison of single-stage and two-phase anaerobic sludge digestion systems—performance and microbial community dynamics. Chemosphere 140:54–62

    Google Scholar 

  25. 25.

    Oliveira F, Doelle K (2015) Anaerobic digestion of food waste to produce biogas: a comparison of bioreactors to increase methane content—a review. J Food Process Technol 06:8–10

    Google Scholar 

  26. 26.

    Champagne P, Li C, Anderson BC (2015) Enhanced biogas production from anaerobic co-digestion of municipal wastewater treatment sludge and fat, oil and grease (FOG) by a modified two-stage thermophilic digester system with selected thermo-chemical pre-treatment. Renew Energy 83:474–482

    Google Scholar 

  27. 27.

    Chipasa KB (2001) Limits of physicochemical treatment of wastewater in the vegetable oil refining industry. Pol J Environ Stud 10:141–147

    Google Scholar 

  28. 28.

    Borja R, Banks CJ (1994) Kinetics of methane production from palm oil mill effluent in an immobilised cell bioreactor using saponite as support medium. Bioresour Technol 48:209–214

    Google Scholar 

  29. 29.

    Boubaker F, Cheikh Ridha B (2007) Anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a tubular digester at mesophilic temperature. Bioresour Technol 98:769–774

    Google Scholar 

  30. 30.

    Hrudey SE (1981) Activated sludge response to emulsified lipid loading. Water Res 15:361–373

    Google Scholar 

  31. 31.

    Boyer MJ (1984) Current pollution control practices in the United States. J Am Oil Chem Soc 61:297–301

    Google Scholar 

  32. 32.

    Cappello S, Denaro R, Yakinov M (2010) Vegetable oil wastes. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin Heidelberg, Messina, pp 2394–2399

    Google Scholar 

  33. 33.

    Borja R, Banks CJ, Sánchez E (1996) Anaerobic treatment of palm oil mill effluent in a two-stage up-flow anaerobic sludge blanket (UASB) system. J Biotechnol 45:125–135

    Google Scholar 

  34. 34.

    Pandey A, Ramachandran S, Singh SK et al (2007) Oil cakes and their biotechnological applications—a review. Bioresour Technol 98:2000–2009

    Google Scholar 

  35. 35.

    Kornaros M, Dareioti MA, Dokianakis SN et al (2009) Biogas production from anaerobic co-digestion of agroindustrial wastewaters under mesophilic conditions in a two-stage process. Desalination 248:891–906

    Google Scholar 

  36. 36.

    Omil F, Garrido JM, Arrojo B, Méndez R (2003) Anaerobic filter reactor performance for the treatment of complex dairy wastewater at industrial scale. Water Res 37:4099–4108

    Google Scholar 

  37. 37.

    Kovacs E, Roland W, Maroti G et al (2013) Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. PLoS One 8:1–18

    Google Scholar 

  38. 38.

    Cail RG, Barford JP (1985) Mesophilic semi-continuous anaerobic digestion of palm oil mill effluent. Biomass 7:287–295

    Google Scholar 

  39. 39.

    Ng WJ, Chin KK, Wong KK (1987) Energy yields from anaerobic digestion of palm oil mill effluent. Biol Wastes 19:257–266

    Google Scholar 

  40. 40.

    Prabhudessai V, Ganguly A, Mutnuri S (2013) Biochemical methane potential of agro wastes. J Energy 2013:1–7

    Google Scholar 

  41. 41.

    Ofoefule AU, Uzodinma EO, Eze JI et al (2008) Effect of some organic wastes on the biogas yield from carbonated soft drink sludge. Sci Res Essay 3:401–405

    Google Scholar 

  42. 42.

    Alves MM, Pereira MA, Sousa DZ et al (2009) Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microb Biotechnol 2:538–550

    Google Scholar 

  43. 43.

    Antonopoulou G, Stamatelatou K, Lyberatos G (2010) Exploitation of rapeseed and sunflower residues for methane generation through anaerobic digestion: the effect of pretreatment. Chem Eng Trans 20:253–258

    Google Scholar 

  44. 44.

    Martínez EJ, Fierro J, Sánchez ME, Gómez X (2012) Anaerobic co-digestion of FOG and sewage sludge: study of the process by Fourier transform infrared spectroscopy. Int Biodeterior Biodegrad 75:1–6

    Google Scholar 

  45. 45.

    Costagli G, Betti M (2015) Avocado oil extraction processes: method for cold-pressed high quality edible oil production versus traditional production. J Agric Eng XLVI:115–122

    Google Scholar 

  46. 46.

    Lanfranchi M, Giannetto C, De Pascale A (2016) Economic analysis and energy valorization of by-products of the olive oil process: “Valdemone DOP” extra virgin olive oil. Renew Sust Energ Rev 57:1227–1236

    Google Scholar 

  47. 47.

    Subramaniam V, Hashim Z (2018) Charting the water footprint for Malaysian crude palm oil. J Clean Prod 178:675–687

    Google Scholar 

  48. 48.

    Requejo-Tapia LC (1999) International trends in fresh avocado and avocado oil production and seasonal variation of fatty acids in New Zealand-grown cv. Massey University, Hass

    Google Scholar 

  49. 49.

    Ros E (2010) Health benefits of nut consumption. Nutrients 2:652–682

    Google Scholar 

  50. 50.

    Carvajal-Zarrabal O, Nolasco-Hipolito C, Aguilar-Uscanga MG et al (2014) Avocado oil supplementation modifies cardiovascular risk profile markers in a rat model of sucrose-induced metabolic changes. Dis Markers 2014:1–8

    Google Scholar 

  51. 51.

    Cmolik J, Pokorny J (2000) Physical refining of edible oils. Eur J Lipid Sci Technol 102:472–486

    Google Scholar 

  52. 52.

    Orive M, Cebrian M, Zufia J (2016) Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry. Renew Energy 97:532–540

    Google Scholar 

  53. 53.

    Borja R, Rincón B, Sánchez E et al (2008) Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue. Waste Manag 28:870–877

    Google Scholar 

  54. 54.

    Aǧdaǧ ON (2011) Biodegradation of olive-mill pomace mixed with organic fraction of municipal solid waste. Biodegradation 22:931–938

    Google Scholar 

  55. 55.

    Borja R, Rincón B, González JM et al (2008) Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng J 40:253–261

    Google Scholar 

  56. 56.

    Kolesárová N, Hutňan M, Špalková V, Lazor M (2013) Anaerobic treatment of rapeseed meal. Chem Pap 67:1569–1576

    Google Scholar 

  57. 57.

    De Castro AM , Castilho L dos R, Freire DMG (2016) Characterization of babassu, canola, castor seed and sunflower residual cakes for use as raw materials for fermentation processes. Ind Crop Prod 83:140–148

    Google Scholar 

  58. 58.

    Atandia E, Rahmana S (2012) The impact of organic loading and canola meal oil content on dairy manure co-digestion for biogas production. Am J Biomass Bioenergy 1:1–19

    Google Scholar 

  59. 59.

    Azbar N, Yonar T (2004) Comparative evaluation of a laboratory and full-scale treatment alternatives for the vegetable oil refining industry wastewater (VORW). Process Biochem 39:869–875

    Google Scholar 

  60. 60.

    Food and Agriculture Organisation of the United Nations Webpage www.fao.org/faostat/en visited on 8 January 2019

  61. 61.

    B.K B, M.P S (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev 9:363–378

    Google Scholar 

  62. 62.

    Pichler M (2015) Legal dispossession: state strategies and selectivities in the expansion of Indonesian palm oil and agrofuel. Dev Chang 46:508–533

    Google Scholar 

  63. 63.

    Dewayanto N, Isha R, Ridzuan M (2014) Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis. Energy Convers Manag 86:226–232

    Google Scholar 

  64. 64.

    Toscano P, Montemurro F (2012) Olive mill by-products management. In: Olive germplasm—the olive cultivation, table olive and olive oil industry in Italy. pp 1–384

    Google Scholar 

  65. 65.

    Woolf A, Wong M, Eyres L et al (2009) Avocado oil. In: Moreau AR, Kamal-Eldin A (eds) Gourmet and health-promoting specialty oils. AOCS Press, Urbana-Illinos, pp 73–125

    Google Scholar 

  66. 66.

    Li Y, Zhu J, Zheng Y, Xu F (2014) Solid-state anaerobic co-digestion of hay and soybean processing waste for biogas production. Bioresour Technol 154:240–247

    Google Scholar 

  67. 67.

    Yu H-Q, Hu Z-H, Hong T-Q, Gu G-W (2002) Performance of an anaerobic filter treating soybean processing wastewater with and without effluent recycle. Process Biochem 38:507–513

    Google Scholar 

  68. 68.

    Ibrahim A, Cheah S, Ma AN et al (1984) Thermophilic anaerobic contact digestion of palm oil mill effluent. Water Sci Technol 17:155–166

    Google Scholar 

  69. 69.

    Fezzani B, Cheikh R Ben (2007) Thermophilic anaerobic co-digestion of olive mill wastewater with olive mill solid wastes in a tubular digester. Chem Eng J 132:195–203

    Google Scholar 

  70. 70.

    Beccari M, Majone M, Papini MP, Torrisi L (2001) Enhancement of anaerobic treatability of olive oil mill effluents by addition of ca(OH)2 and bentonite without intermediate solid / liquid separation. Water Sci Technol 43:275–282

    Google Scholar 

  71. 71.

    González-González A, Cuadros F (2015) Effect of aerobic pretreatment on anaerobic digestion of olive mill wastewater (OMWW): an ecoefficient treatment. Food Bioprod Process 95:339–345

    Google Scholar 

  72. 72.

    Jekayinfa SO, Scholz V (2013) Laboratory scale preparation of biogas from cassava tubers, cassava peels, and palm kernel oil residues. Energy Sources, Part A Recover Util Environ Eff 35:2022–2032

    Google Scholar 

  73. 73.

    Razuan R, Chen Q, Zhang X et al (2010) Pyrolysis and combustion of oil palm stone and palm kernel cake in fixed-bed reactors. Bioresour Technol 101:4622–4629

    Google Scholar 

  74. 74.

    Miranda T, Arranz JI, Montero I et al (2012) Characterization and combustion of olive pomace and forest residue pellets. Fuel Process Technol 103:91–96

    Google Scholar 

  75. 75.

    Özveren U, Özdoğan ZS (2013) Investigation of the slow pyrolysis kinetics of olive oil pomace using thermo-gravimetric analysis coupled with mass spectrometry. Biomass Bioenergy 58:168–179

    Google Scholar 

  76. 76.

    Raposo F, Borja R, Rincon B, Jimenez AM (2008) Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass Bioenergy 32:1235–1244

    Google Scholar 

  77. 77.

    Araujo VKA, De Almeida S, De Oliveira SB et al (2017) Anaerobic digestion using residue of soybean processing: biogas production and its potential to generate energy. In: 18th International Scientific Conference on Electric Power Engineering, EPE 2017. IEEE, pp 2–5

  78. 78.

    Tay T, Ucar S, Karagöz S (2009) Preparation and characterization of activated carbon from waste biomass. J Hazard Mater 165:481–485

    Google Scholar 

  79. 79.

    Demirer GN, Isci A (2007) Biogas production potential from cotton wastes. Renew Energy 32:750–757

    Google Scholar 

  80. 80.

    Pütün E, Uzun BB, Pütün AE (2006) Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate. Bioresour Technol 97:701–710

    Google Scholar 

  81. 81.

    Agrawalla A, Kumar S, Singh RK (2011) Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresour Technol 102:10711–10716

    Google Scholar 

  82. 82.

    Biogas B (2018) Out of biogas from different types of substrates. In: Inf. Sheet. http://www.biteco-energy.com/biogas-yield/. Accessed 5 Jun 2018

  83. 83.

    Kim H (2003) The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manag Res 21:515–526

    Google Scholar 

  84. 84.

    Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445–446:385–396

    Google Scholar 

  85. 85.

    Costa JC, Gonçalves PR, Nobre A, Alves MM (2012) Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour Technol 114:320–326

    Google Scholar 

  86. 86.

    Freitas TB, Felix TL, Pedreira MS et al (2017) Effects of increasing palm kernel cake inclusion in supplements fed to grazing lambs on growth performance, carcass characteristics, and fatty acid profile. Anim Feed Sci Technol 226:71–80

    Google Scholar 

  87. 87.

    Bezerra LS, Barbosa AM, Carvalho GGP et al (2016) Meat quality of lambs fed diets with peanut cake. Meat Sci 121:88–95

    Google Scholar 

  88. 88.

    Balogun AM, Fagbenro OA (1995) Use of macadamia presscake as a protein feedstuff in practical diets for tilapia, Oreochromis niloticus (L.). Acquacult Res 26:371–377

    Google Scholar 

  89. 89.

    Jitngarmkusol S, Tananuwong K, Hongsuwankul J (2008) Chemical compositions, functional properties, and microstructure of defatted macadamia flours. Food Chem 110:23–30

    Google Scholar 

  90. 90.

    Rotta EM, De Morais DR, Batoqui P et al (2016) Use of avocado peel (Persea americana) in tea formulation: a functional product containing phenolic compounds with antioxidant activity. Acta Sci Technol 38:23–29

    Google Scholar 

  91. 91.

    Olaeta JA, Schwartz M, Undurraga P, Contreras S (2007) Use of hass avocado (Persea americana Mill.) seed as a processed product. In: Proceedings VI World Avocado Congress. pp 1–8

  92. 92.

    Bouallagui H, Ben Cheikh R, Marouani L, Hamdi M (2003) Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresour Technol 86:85–89

    Google Scholar 

  93. 93.

    Abbassi-Guendouz A, Brockmann D, Trably E et al (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111:55–61

    Google Scholar 

  94. 94.

    de Mes TZD Stams A.J.M, Reith JH, Zeeman G (2003). Industrial scale garage-type dry fermentation of municipal solid waste to biogas. In: Reith JH, Wijfells RH Barten H (eds). Biomethane and biohydrogen—status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation.The Hague. pp 58–102

    Google Scholar 

  95. 95.

    Jiang C, Qi R, Hao L et al (2018) Monitoring foaming potential in anaerobic digesters. Waste Manag 75:280–288

    Google Scholar 

  96. 96.

    Hernández-Berriel MC, Márquez-Benavides L, González-Pérez DJ, Buenrostro-Delgado O (2008) The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (México). Waste Manag 28:S14–S20

    Google Scholar 

  97. 97.

    Murtagh JE (1999) Molasses as a feedstock for alcohol production. In: Jacques K, Lyons TP, Kessal D (eds) The alcohol textbook, 3rd edn. Nottingham University Press, Nottingham, pp 89–96

    Google Scholar 

  98. 98.

    Tekin AR, Dalgiç AC (2000) Biogas production from olive pomace. Resour Conserv Recycl 30:301–313

    Google Scholar 

  99. 99.

    Blackall LL, Harbers AE, Hayward AC, Greenfield PF (1991) Activated sludge foams: effects of environmental variables on organism growth and foam formation. Environ Technol 12:241–248

    Google Scholar 

  100. 100.

    Bouallagui H, Haouari O, Touhami Y et al (2004) Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochem 39:2143–2148

    Google Scholar 

  101. 101.

    Ganidi N, Tyrrel S, Cartmell E (2009) Anaerobic digestion foaming causes – a review. Bioresour Technol 100:5546–5554

    Google Scholar 

  102. 102.

    Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552

    Google Scholar 

  103. 103.

    Achinas S, Euverink GJW (2016) Theoretical analysis of biogas potential prediction from agricultural waste. Resour Technol 2:143–147

    Google Scholar 

  104. 104.

    Raposo F, Fernández-Cegrí V, de la Rubia MA et al (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098

    Google Scholar 

  105. 105.

    Yejian Z, Yan L, Chi L et al (2008) Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent. J Environ Sci 20:658–663

    Google Scholar 

  106. 106.

    Gonçalves MR, Costa JC, Marques IP, Alves MM (2012) Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater. Water Res 46:1684–1692

    Google Scholar 

  107. 107.

    Zheng Y, Li Y (2018) Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chem 257:135–142

    Google Scholar 

  108. 108.

    Yahaya M, Takahashi J, Matsuoka S, Kibon A (1999) Effect of supplementary feeding of cotton seed cake on feed intake, water consumption and work output of work bulls in Borno state, Nigeria. Anim Feed Sci Technol 79:137–143

    Google Scholar 

  109. 109.

    Chrenková M, Čerešňáková Z, Weisbjerg MR et al (2014) Characterization of proteins in feeds according to the CNCPS and comparison to in situ parameters. Czech J Anim Sci 59:288–295

    Google Scholar 

  110. 110.

    Lee DH, Behera SK, Kim JW, Park H-S (2009) Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Manag 29:876–882

    Google Scholar 

  111. 111.

    Guermoud N, Ouadjnia F, Abdelmalek F et al (2009) Municipal solid waste in Mostaganem city (Western Algeria). Waste Manag 29:896–902

    Google Scholar 

  112. 112.

    Pavlostathis S, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment. Water Sci Technol 24:35–59

    Google Scholar 

  113. 113.

    Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    Google Scholar 

  114. 114.

    Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energ Rev 34:491–500

    Google Scholar 

  115. 115.

    Rajeshwari KV, Balakrishnan M, Kansal A et al (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sust Energ Rev 4:135–156

    Google Scholar 

  116. 116.

    Steinbüchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16:607–613

    Google Scholar 

  117. 117.

    Aggett PJ (2018) Population reference intakes and micronutrient bioavailability: a European perspective. Am J Clin Nutr 91:1433S–1437S

    Google Scholar 

  118. 118.

    Grace I (2016) Enzyme production and activities of lignocellulolytic fungi cultivated on agricultural residues. University of South Africa

  119. 119.

    Beccari M, Carucci G, Majone M, Torrisi L (1999) Role of lipids and phenolic compounds in the anaerobic treatment of olive oil mill effluents. Environ Technol 20:105–110

    Google Scholar 

  120. 120.

    Hwu C (1997) Enhancing anaerobic treatment of wastewaters containing oleic acid. Wageningen Agricultural University

  121. 121.

    Novak JT, Carlson DA (1970) The kinetics of anaerobic long chain fatty acid degradation. Water Pollut Control Fed J 42:1932–1943

    Google Scholar 

  122. 122.

    Nunn WD (1986) A molecular view of fatty acid catabolism in Escherichia coli. Microbiol Rev 50:179–192

    Google Scholar 

  123. 123.

    Wang Y, Zhang Y, Wang J, Meng L (2009) Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33:848–853

    Google Scholar 

  124. 124.

    Rasit N, Idris A, Harun R, Wan AB, Karim Ghani WA (2015) Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview. Renew Sust Energ Rev 45:351–358

    Google Scholar 

  125. 125.

    Lalman JA, Bagley DM (2001) Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res 35:2975–2983

    Google Scholar 

  126. 126.

    Ma J, Zhao Q-B, Laurens LLM et al (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels 8:1–12

    Google Scholar 

  127. 127.

    Ziels RM, Karlsson A, Beck D et al (2016) Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge. Water Res 103:372–382

    Google Scholar 

  128. 128.

    Okudoh V, Trois C, Workneh T, Schmidt S (2014) The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: a review. Renew Sust Energ Rev 39:1035–1052

    Google Scholar 

  129. 129.

    Kumar KV, Sridevi V, Rani K et al (2013) A review on production of biogas, fundamentals, applications & its recent enhancing techniques. Chem Eng 57:14073–14079

    Google Scholar 

  130. 130.

    Battista F, Fino D, Ruggeri B (2014) Polyphenols concentration’s effect on the biogas production by wastes derived from olive oil production. Chem Eng Trans 38:373–378

    Google Scholar 

  131. 131.

    Tsagaraki E, Lazarides HN, Petrotos KB (2007) Olive mill wastewater treatment. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry, eds. Springer, Boston, pp 133–157

    Google Scholar 

  132. 132.

    Chantho P, Musikavong C, Suttinun O (2016) Removal of phenolic compounds from palm oil mill effluent by thermophilic Bacillus thermoleovorans strain A2 and their effect on anaerobic digestion. Int Biodeterior Biodegrad 115:293–301

    Google Scholar 

  133. 133.

    Satyanarayan S, Ramakant S (2010) Biogas production enhancement by soya sludge amendment in cattle dung digesters. Biomass Bioenergy 34:1278–1282

    Google Scholar 

  134. 134.

    Khoufi S, Louhichi A, Sayadi S (2015) Optimization of anaerobic co-digestion of olive mill wastewater and liquid poultry manure in batch condition and semi-continuous jet-loop reactor. Bioresour Technol 182:67–74

    Google Scholar 

  135. 135.

    Beccari M, Bonemazzi F, Majone M, Riccardi C (1996) Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Res 30:183–189

    Google Scholar 

  136. 136.

    Chen SF, Yakunin AF, Kuznetsova E, Busso D, Pufan R, Proudfoot M, Kim R, Kim SH (2004) Structural and functional characterization of a novel phosphodiesterase from Methanococcus jannaschii. J Biol Chem 279:31854–31862

    Google Scholar 

  137. 137.

    Diekert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol 148:459–464

    Google Scholar 

  138. 138.

    Zhang Y, Zhang Z, Suzuki K, Maekawa T (2003) Uptake and mass balance of trace metals for methane producing bacteria. Biomass Bioenergy 25:427–433

    Google Scholar 

  139. 139.

    Abdelsalam E, Samer M, Hassan HE et al (2015) Effect of CoCl2, NiCl2 AND FeCl3 additives on biogas and methane production. Misr J Agric Eng 32:843–862

    Google Scholar 

  140. 140.

    Roussel J, Fermoso FG, Collins G et al (2018) Trace element supplementation as a management tool for anaerobic digester operation: benefits and risks In: eBook. http://wio.iwaponline.com/lookup/doi/10.2166/9781780409429. Accessed 26 Aug 2018

  141. 141.

    Thanh PM, Ketheesan B, Yan Z, Stuckey D (2016) Trace metal speciation and bioavailability in anaerobic digestion: a review. Biotechnol Adv 34:122–136

    Google Scholar 

  142. 142.

    Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534

    Google Scholar 

  143. 143.

    Romero-Güiza MS, Vila J, Mata-Alvarez J et al (2016) The role of additives on anaerobic digestion: a review. Renew Sust Energ Rev 58:1486–1499

    Google Scholar 

  144. 144.

    Mata-Alvarez J, Dosta J, Romero-Güiza MS et al (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sust Energ Rev 36:412–427

    Google Scholar 

  145. 145.

    Meyer-Kohlstock D, Haupt T, Heldt E et al (2016) Biochar as additive in biogas-production from bio-waste. Energies 9

  146. 146.

    Wilkie A, Goto M, Bordeaux FM, Smith PH (1986) Enhancement of anaerobic methanogenesis from napiergrass by addition of micronutrients. Biomass 11:135–146

    Google Scholar 

  147. 147.

    Gopinathan C, Prajapati S, Rohira H (2015) Supplementing pineapple pulp waste with urea and metal ions enhances biogas production. IOSR J Environ Sci Ver I 9:2319–2399

    Google Scholar 

  148. 148.

    Molaey R, Bayrakdar A, Sürmeli RÖ, Çalli B (2018) Anaerobic digestion of chicken manure: mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass Bioenergy 108:439–446

    Google Scholar 

  149. 149.

    Nordell E, Hansson AB, Karlsson M (2013) Zeolites relieve inhibitory stress from high concentrations of long chain fatty acids. Waste Manag 33:2659–2663

    Google Scholar 

  150. 150.

    Borja R, Rincón B, Raposo F et al (2004) Mesophilic anaerobic digestion in a fluidised-bed reactor of wastewater from the production of protein isolates from chickpea flour. Process Biochem 39:1913–1921

    Google Scholar 

  151. 151.

    Borja R, Bank C (1995) Comparison of an anaerobic filter and an anaerobic fluidized bed reactor treating palm oil mill effluent. Process Biochem 30:511–521

    Google Scholar 

  152. 152.

    Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111

    Google Scholar 

  153. 153.

    Tale VP, Maki JS, Zitomer DH (2015) Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Res 70:138–147

    Google Scholar 

  154. 154.

    Schauer-Gimenez AE, Zitomer DH, Maki JS, Struble CA (2010) Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure. Water Res 44:3555–3564

    Google Scholar 

  155. 155.

    Gollakota KG, Meher KK (1988) Effect of particle size, temperature, loading rate and stirring on biogas production from castor cake (oil expelled). Biol Wastes 24:243–249

    Google Scholar 

  156. 156.

    Dhaked RK, Singh P, Singh L (2010) Biomethanation under psychrophilic conditions. Waste Manag 30:2490–2496

    Google Scholar 

  157. 157.

    McKeown RM, Hughes D, Collins G et al (2012) Low-temperature anaerobic digestion for wastewater treatment. Curr Opin Biotechnol 23:444–451

    Google Scholar 

  158. 158.

    Petropoulos E, Dolfing J, Davenport RJ et al (2017) Developing cold-adapted biomass for the anaerobic treatment of domestic wastewater at low temperatures (4, 8 and 15 °C) with inocula from cold environments. Water Res 112:100–109

    Google Scholar 

  159. 159.

    Hwu C-S, Van Lier JB, Lettinga G (1998) Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids. Process Biochem 33:75–81

    Google Scholar 

  160. 160.

    Hwu C-S, Lettinga G (1997) Acute toxicity of oleate to acetate-utilizing methanogens in mesophilic and thermophilic anaerobic sludges. Enzym Microb Technol 21:297–301

    Google Scholar 

  161. 161.

    Prasad RD (2012) Empirical study on factors affecting biogas production. ISRN Renew Energy 2012:1–7

    Google Scholar 

  162. 162.

    Oleskowicz-Popiel P, Jankowska E, Chwiałkowska J, Stodolny M (2015) Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour Technol 190:274–280

    Google Scholar 

  163. 163.

    Horiuchi JI, Shimizu T, Tada K et al (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82:209–213

    Google Scholar 

  164. 164.

    Hwang MH, Jang NJ, Hyun SH, Kim IS (2004) Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J Biotechnol 111:297–309

    Google Scholar 

  165. 165.

    Wu Y, Wang C, Zheng M et al (2017) Effect of pH on ethanol-type acidogenic fermentation of fruit and vegetable waste. Waste Manag 60:158–163

    Google Scholar 

  166. 166.

    Kadier A, Kalil MS, Chandrasekhar K et al (2018) Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): strategies for inhibiting growth of methanogens. Bioelectrochemistry 119:211–219

    Google Scholar 

  167. 167.

    Buekens A (2005) Energy recovery from residual waste by means of anaerobic digestion technologies. In: The future of residual waste management in Europe. pp 1–16

  168. 168.

    Abebe M (2017) Characterisation peal of fruit and leaf of vegetable waste with cow dung for maximizing the biogas yield. Int J Energy Power Eng 6:13–21

    Google Scholar 

  169. 169.

    Wang X, Yang G, Feng Y et al (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83

    Google Scholar 

  170. 170.

    Sung S, Liu T (2003) Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53:43–52

    Google Scholar 

  171. 171.

    Massé DI, Rajagopal R, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641

    Google Scholar 

  172. 172.

    Van Haandel AC (1994) Influence of the digested COD concentration of the alkalinity requirements in anaerobic digesters. Water Sci Technol 30:23–34

    Google Scholar 

  173. 173.

    McCarty PL, McKinney RE (1961) Salt toxicity in anaerobic digestion. Water Pollut Control Fed J 33:399–415

    Google Scholar 

  174. 174.

    Lane AG (1984) Laboratory scale anaerobic digestion of fruit and vegetable solid waste. Biomass 5:245–259

    Google Scholar 

  175. 175.

    Martin, A.Borja, R.Garcia, I.Fiestas, J.A (1991) Kinetics of methane production from olive mill wastewater. Process Biochem 26: 101–107

    Google Scholar 

  176. 176.

    Martín A, Borja R, Banks CJ (1994) Kinetic model for substrate utilization and methane production during the anaerobic digestion of olive mill wastewater and condensation water waste. J Chem Technol 60:7–16

    Google Scholar 

  177. 177.

    Zhang TC, Noike T (1994) Influence of retention time on reactor performance and bacterial trophic populations in anaerobic digestion processes. Water Res 28:27–36

    Google Scholar 

  178. 178.

    Ziganshin AM, Schmidt T, Lv Z et al (2016) Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems. Bioresour Technol 217:62–71

    Google Scholar 

  179. 179.

    Sánchez E, Borja R, Travieso L et al (2005) Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresour Technol 96:335–344

    Google Scholar 

  180. 180.

    Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 6:205–212

    Google Scholar 

  181. 181.

    Suhartini S (2014) The anaerobic digestion of sugar beet pulp. Southampton

  182. 182.

    Hwu C, Van Beek B, Van Lier JB, Lettinga G (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: effect of washed out biomass recirculation. Biotechnol Lett 19:453–456

    Google Scholar 

  183. 183.

    Wirth B, Reza T, Mumme J (2015) Influence of digestion temperature and organic loading rate on the continuous anaerobic treatment of process liquor from hydrothermal carbonization of sewage sludge. Bioresour Technol 198:215–222

    Google Scholar 

  184. 184.

    Xie T, Xie S, Sivakumar M, Nghiem LD (2017) Relationship between the synergistic/antagonistic effect of anaerobic co-digestion and organic loading. Int Biodeterior Biodegrad:1–7

  185. 185.

    Wheatley A, Fisher M, Grobicki W (1997) Applications of anaerobic digestion for the treatment of industrial wastewaters in Europe. Water Environ J February:39–46

    Google Scholar 

  186. 186.

    Szewczyk KW, Bukowski J (2008) Modelling of a batch anaerobic digestion. Pol J Chem Technol 10:45–48

    Google Scholar 

  187. 187.

    Ferguson RMW, Coulon F, Villa R (2016) Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Res 100:348–356

    Google Scholar 

  188. 188.

    Gómez X, Cuetos MJ, Cara J et al (2006) Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes. Conditions for mixing and evaluation of the organic loading rate. Renew Energy 31:2017–2024

    Google Scholar 

  189. 189.

    Choong YY, Chou KW, Norli I (2018) Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: a critical review. Renew Sust Energ Rev 82:2993–3006

    Google Scholar 

  190. 190.

    Raskin L, Stroot PG, McMahon KD, Mackie RI (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—I. Digester performance. Water Res 35:1804–1816

    Google Scholar 

  191. 191.

    Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Google Scholar 

  192. 192.

    Tian L, Zou D, Yuan H et al (2015) Identifying proper agitation interval to prevent floating layers formation of corn stover and improve biogas production in anaerobic digestion. Bioresour Technol 186:1–7

    Google Scholar 

  193. 193.

    Battista F, Fino D, Mancini G, Ruggeri B (2016) Mixing in digesters used to treat high viscosity substrates: the case of olive oil production wastes. J Environ Chem Eng 4:915–923

    Google Scholar 

  194. 194.

    Long JH, Aziz TN, Reyes FLDL, Ducoste JJ (2012) Anaerobic codigestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process Saf Environ Prot 90:231–245

    Google Scholar 

  195. 195.

    Rinzema A, Alphenaar A, Lettinga G (1993) Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Process Biochem 28:527–537

    Google Scholar 

  196. 196.

    Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Google Scholar 

  197. 197.

    Arthur Mensah K, Forster CF (2003) An examination of the effects of detergents on anaerobic digestion. Bioresour Technol 90:133–138

    Google Scholar 

  198. 198.

    Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911

    Google Scholar 

  199. 199.

    Lin L, Xu F, Ge X, Li Y (2018) Improving the sustainability of organic waste management practices in the food-energy-water nexus: a comparative review of anaerobic digestion and composting. Renew Sust Energ Rev 89:151–167

    Google Scholar 

  200. 200.

    Palatsi J, Illa J, Prenafeta-Boldú FX et al (2010) Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modelling. Bioresour Technol 101:2243–2251

    Google Scholar 

  201. 201.

    Palatsi J, Laureni M, Andrés MV et al (2009) Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol 100:4588–4596

    Google Scholar 

  202. 202.

    Palatsi J, Zonta Ž, Alves MM, Flotats X (2013) Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process. Water Res 47:1369–1380

    Google Scholar 

  203. 203.

    Sun Y, Wang D, Yan J et al (2014) Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes. Waste Manag 34:1025–1034

    Google Scholar 

  204. 204.

    Ziels RM, Beck DAC, Stensel HD (2017) Long-chain fatty acid feeding frequency in anaerobic codigestion impacts syntrophic community structure and biokinetics. Water Res 117:218–229

    Google Scholar 

  205. 205.

    Hamdi M, Garcia J, Ellouz R (1992) Intergrated biological process for olive mill wastewater treatment. Bioprocess Eng 8:79–84

    Google Scholar 

  206. 206.

    Gell K, Van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. J Hazard Mater 186:2017–2025

    Google Scholar 

  207. 207.

    Ganidi N, Tyrrel S, Cartmell E (2009) Anaerobic digestion foaming causes - a review. Bioresour Technol 100:5546–5554

    Google Scholar 

  208. 208.

    Kougias PG, Boe K, Angelidaki I (2015) Solutions for foaming problems in biogas reactors using natural oils or fatty acids as defoamers. Energy Fuel 29:4046–4051

    Google Scholar 

  209. 209.

    Kougias PG, Boe K, O-Thong S et al (2014) Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions. Water Sci Technol 69:889–895

    Google Scholar 

  210. 210.

    Kougias PG, Boe K, Angelidaki I (2013) Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors. Bioresour Technol 144:1–7

    Google Scholar 

  211. 211.

    Krishma PR, Kent CC, Wendell KH (1997) Causes and effects of foaming in anaerobic sludge digesters. Water Sci Technol 36:463–470

    Google Scholar 

  212. 212.

    Westland DA, Hagland E, Rothman M (1998) Foaming in anaerobic digesters caused by Microthrix parvicella. Water Sci Technol 37:51–55

    Google Scholar 

  213. 213.

    Lienen T, Kleyböcker A, Verstraete W, Würdemann H (2014) Foam formation in a downstream digester of a cascade running full-scale biogas plant: influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella. Bioresour Technol 153:1–7

    Google Scholar 

  214. 214.

    Rossetti S, Tomei MC, Nielsen PH, Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol Rev 29:49–64

    Google Scholar 

  215. 215.

    Nielsen PH, Roslev P, Dueholm TE, Nielsen JL (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Sci Technol 46:73–80

    Google Scholar 

  216. 216.

    Mamais D, Nikitopoulos G, Andronikou E et al (2006) Influence of the presence of long chain fatty acids (LCFAs) in the sewage on the growth of M.Parvicella in activated sludge wastewater treatment plants. Glob NEST J 8:82–88

    Google Scholar 

  217. 217.

    Ghosh R, Bhattacherjee S (2013) A review study on anaerobic digesters with an insight to biogas production. Int J Eng Sci Invent 2:8–17

    Google Scholar 

  218. 218.

    Elangovan C, Sekar ASS (2012) Application of upflow anaerobic sludge blanket (UASB) reactor process for the treatment of dairy wastewater—a review. Nat Environ Pollut Technol 11:409–414

    Google Scholar 

  219. 219.

    Qian MY et al (2016) Industrial scale garage-type dry fermentation of municipal solid waste to biogas. Bioresour Technol 217:82–89

    Google Scholar 

  220. 220.

    Poh PE, Chong MF (2009) Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresour Technol 100:1–9

    Google Scholar 

  221. 221.

    Ghosh S, Ombregt JP, Pipyn P (1985) Methane production from industrial wastes by two-phase anaerobic digestion. Water Res 19:1083–1088

    Google Scholar 

  222. 222.

    Weiland P (1993) One and two step anaerobic digestion of agroindustrial residues. Water Sci Technol 27:145–151

    Google Scholar 

  223. 223.

    Zhu G-F, Li J-Z, Wu P et al (2008) The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater. Bioresour Technol 99:8027–8033

    Google Scholar 

  224. 224.

    Jeyaseelan S, Matsuo T (1995) Effects of phase separation in anaerobic digestion on different substrates. Water Sci Technol 31:153–162

    Google Scholar 

  225. 225.

    Madura RL, Walling DA, Farrell JB, Bhattacharya SK (1996) Volatile solids reduction in two phase and conventional anaerobic sludge digestion. Water Res 30:1041–1048

    Google Scholar 

  226. 226.

    Ghosh S (1987) Improved sludge gasification by two-phase anaerobic digestion. J Environ Eng 113:1265–1288

    Google Scholar 

  227. 227.

    Turovskiy IS, Mathai PK (2006) Wastewater sludge processing. Wiley-Interscience, New Jersey

    Google Scholar 

  228. 228.

    Braber K, Novem BV (1995) Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenergy 9:365–376

    Google Scholar 

Download references

Acknowledgments

This research was supported by the University of South Africa (UNISA) through the Institute for the Development of Energy for African Sustainability (IDEAS). The authors are grateful to UNISA for the resources provided to enable this work to be conducted.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles Rashama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rashama, C., Ijoma, G. & Matambo, T. Biogas generation from by-products of edible oil processing: a review of opportunities, challenges and strategies. Biomass Conv. Bioref. 9, 803–826 (2019). https://doi.org/10.1007/s13399-019-00385-6

Download citation

Keywords

  • Biogas
  • Edible oil cake
  • Pomace
  • Microbial inhibition
  • Anaerobic digestion
  • Wastewater treatment