Skip to main content
Log in

Modelling of particle size effect on Equivalence Ratio requirement for wood combustion in fixed beds

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A sufficient amount of air is needed for the optimum combustion of fuel. The correct amount of air supply assures optimal flue gas temperature to maximise heat utilisation with fewer pollutants. The quantity of air requirement depends on the fuel type. Equivalence Ratio (ER) requirement has been defined empirically for different fuel types. Wood combustion requires a high degree of excess air requirement compared to other fuels. Data on ER requirement is essential for the industrial operation of wood combustion systems. One of the factors which affect the amount of ER is the size of fuel which has not been given sufficient attention. The effect of particle size on the ER requirement in packed bed combustion of thermally thick wood particles is studied in this research through numerical modelling. Computational fluid dynamics simulations were carried out for the particle sizes of 25 mm, 38 mm, and 63 mm wood particles under air flow velocity of 0.12 ms−1. Simulation results show that the ER value for smaller particle sizes is less than that for the larger particle sizes under the same volumetric air flow rate. CFD simulations were used to decide the optimum ER which maximises the flue gas temperature with minimum possible CO fraction for particle sizes of 25 mm, 38 mm, and 63 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

Abbreviations

Aspec :

Volume specific surface area (m−1)

A p :

Projected area (m−1)

ag :

Absorption coefficient of gas (m−1)

as :

Absorption coefficient of solid (m−1)

Ci :

Concentration of gases (mol m−3)

C1,C2 :

Constants used in standard k-epsilon equation

Cpg :

Specific heat capacity of gas (J kg−1 K−1)

Cps :

Specific heat capacity of solid (J kg−1 K−1)

Da,i :

Effective diffusivity of species i through ash layer (m2 s−1)

Di :

Binary diffusivity of species i in air (m2 s−1)

Dk,i :

Knudsen diffusivity of species i (m2 s−1)

Deff,i :

Effective diffusivity of species i (m2 s−1)

dp :

Particle diameter (m)

dp,o :

Initial particle diameter (m)

dpore :

Pore diameter (m)

Ep :

Radiative emission from particles (W m−3)

G:

Radiation intensity (W m−2)

e:

Emissivity

Hg,i :

Heat of reactions gas-phase reactions (J kg−1)

Hm :

Heat of evaporation (J kg−1)

Hs,i :

Heat of reactions solid-phase reactions (J kg−1)

h:

Convective heat transfer coefficient (W m−2 K−1)

hm,a,i :

Mass transfer coefficient of ith gaseous component through ash layer (m s−1)

hmi :

Mass transfer coefficient of ith gaseous species in the boundary layer (m s−1)

hm,ieff :

Effective mass transfer coefficient (m s−1)

k:

Turbulent kinetic energy (m2 s−2)

ki :

Kinetic reaction rate of char with ith gaseous component (m s−1)

ki,eff :

Effective reaction rate (m s−1)

la :

Ash layer thickness (m)

Mair :

Air molar weight (kg mol−1)

Mc :

Carbon molar weight (kg mol−1)

Mi :

Species molar weight (kg mol−1)

ms,i :

Solid-phase species mass in a computational cell (moisture, wood, char, ash) (kg m−3)

ms,w :

Mass of water in a computational cell (kg m−3)

m:

Mass (kg)

Nu:

Nusselt number

n:

Refractive index

P:

Pressure (Pa)

Pr:

Prandtl number

Qrad,g :

Radiation heat source term gas phase (W m−3)

Qrad,s :

Radiation heat source term solid phase (W m−3)

R:

Universal gas constant (J K−1 mol−1)

Re:

Reynolds number

Rg,i :

Gas-phase reaction rate ith species (kgm−3 s−1)

Rki :

Gas-phase kinetic reaction rate of ith species (kgm−3 s−1)

Rmix,i :

Gas-phase mixing rate ith species (kgm−3 s−1)

Rs,i :

Solid-phase reaction rate (kgm−3 s−1)

Rs,w :

Rate of drying (kg m−3 s−1)

Sg,i :

Summed production rate of ith gas species in gas-phase reactions (kg m−3 s−1)

Sh:

Sherwood number

Sij :

Turbulent stress tensor (Pa)

Sm :

Momentum resistance source term (kgm−2 s−2)

Ss,i :

Summed production rate of ith gas species in solid-phase reactions (kg m−3 s−1)

Tevap :

Evaporation temperature (K)

Tg :

Gas-phase temperature (K)

Ts :

Solid-phase temperature (K)

t:

Time (s)

u:

Velocity (m s−1)

ubed :

Bed velocity (m s−1)

Vcell :

Volume of cells (m3)

Xa :

Mass fraction of ash

Yi :

Mass fraction of gas species i

Yb :

Mass fraction of bound water in solid phase

α:

Mass fraction

β:

Solid cell identification factor

γ:

Factor of bed height change

ε:

Turbulent dissipation rate

η:

Permeability

λg :

Thermal conductivity of gas (W m−1 K−1)

λs :

Thermal conductivity of solid (W m−1 K−1)

μ:

Viscosity (kg m−1 s−1)

μt :

Turbulent viscosity (kg m−1 s−1)

ρa :

Ash density (kg m−3)

ρg :

Gas density (kg m−3)

ρs :

Solid density (kg m−3)

σ:

Steffan Boltzmann constant (W m−2 K−4)

σi,air :

Collision diameter (A)

σεk :

Model constants in standard k-epsilon equations

σs :

Scattering coefficient (m−1)

τ:

Stress tensor (Pa)

ϕ:

Porosity

ϕa :

Ash layer porosity

Ωc,i :

Stoichiometric coefficient of ith heterogeneous reaction

Ωg,i :

Stoichiometric coefficient of ith gas-phase reactions

Ω c,o :

Stoichiometric coefficient of char oxidation reactions

Ω g,i,o :

Stoichiometric coefficient of ith gas-phase oxidation reaction

Ωi,air :

Collisional integral

References

  1. Arce M, Saavedra Á, Míguez J, Granada E, Cacabelos A (2013) Biomass fuel and combustion conditions selection in a fixed bed combustor. Energies 6(11):5973–5989

    Article  Google Scholar 

  2. Kubler H (1991) Indicators and significance of air supply in the combustion of wood for heat. Wood Fiber Sci 23(2):153–164

    Google Scholar 

  3. Hughes AD (1976) Fuelling around the boiler room. For Prod J 26:33–38

    Google Scholar 

  4. Yin C, Rosendahl L a, Kær SK (2008) Grate-firing of biomass for heat and power production. Prog Energy Combust Sci 34(6):725–754

    Article  Google Scholar 

  5. Ryu C, Bin Yang Y, Khor A, Yates NE, Sharifi VN, Swithenbank J (2006) Effect of fuel properties on biomass combustion: part I. experiments - fuel type, equivalence ratio and particle size. Fuel 85(7–8):1039–1046

    Article  Google Scholar 

  6. Yang Y, Ryu C, Khor a, Yates N, Sharifi V, Swithenbank J (2005) Effect of fuel properties on biomass combustion. Part II. Modelling approach—identification of the controlling factors. Fuel 84(16):2116–2130

    Article  Google Scholar 

  7. Yang YB, Sharifi VN, Swithenbank J (2005) Numerical simulation of the burning characteristics of thermally-thick biomass fuels in packed-beds. Process Saf Environ Prot 83(6):549–558

    Article  Google Scholar 

  8. Pérez JF, Melgar A, Tinaut FV (2014) Modeling of fixed bed downdraft biomass gasification : application on lab-scale and industrial reactors. no April 2013, pp 319–338

  9. Suranani S, Goli VR (2012) Fuel particle size effect on performance of fluidized bed combustor firing ground nutshells. Int J Chem Eng Appl 3(2):147–151

    Google Scholar 

  10. Bryden KM, Ragland KW (1996) Numerical modeling of a deep, fixed bed combustor. Energy Fuel 10(2):269–275

    Article  Google Scholar 

  11. Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I (2014) Multi-physics modelling of packed bed biomass combustion. Fuel 122:164–178

    Article  Google Scholar 

  12. Schulze S, Nikrityuk P, Compart F, Richter A, Meyer B (2017) Particle-resolved numerical study of char conversion processes in packed beds. Fuel 207:655–662

    Article  Google Scholar 

  13. Scharler R (2000) Ingwald Obernberger, Numerical Modelling of Biomass Grate Furnaces. In European Conference on Industrial Furnaces and Boilers, vol 1(3), pp 550–556

  14. Hermansson S, Thunman H (2011) CFD modelling of bed shrinkage and channelling in fixed-bed combustion. Combust Flame 158(5):988–999

    Article  Google Scholar 

  15. Hallett W, Green B, Machula T, Yang Y (2013) Packed bed combustion of non-uniformly sized char particles. Chem Eng Sci 96:1–9

    Article  Google Scholar 

  16. Mätzing H, Gehrmann H-J, Kolb T, Seifert H (2012) Experimental and numerical investigation of wood particle combustion in fixed bed reactors. Environ Eng Sci 29(10):907–914

    Article  Google Scholar 

  17. Shin D, Choi S (2000) The combustion of simulated waste particles in a fixed bed. Combust Flame 121:167–180

    Article  Google Scholar 

  18. Perera KUC, Narayana M (2017) Finite Volume Analysis of Biomass Particle Pyrolysis. In 2017 Moratuwa Engineering Research Conference (MERCon) F, 2, pp 379–384

  19. Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, Scherer V, Lu H, Baxter LL (2012) A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process Technol 95:96–108

    Article  Google Scholar 

  20. Kurdyumov V, Fernandez E (1998) Heat transfer from a circular cylinder at low Reynolds numbers. J Heat Transf 120(1):72–75

    Article  Google Scholar 

  21. Gunn DJ (1978) Transfer of heat or mass to particles in fixed and fluidised beds. Int J Heat Mass Transf 21(4):467–476

    Article  Google Scholar 

  22. Johansson R, Thunman H, Leckner B (2007) Sensitivity analysis of a fixed bed combustion model. Energy Fuel 21(3):1493–1503

    Article  Google Scholar 

  23. A. Inc. (2013) ANSYS Fluent Theory Guide. no. November. Southpointe 275, Technology Drive, Canonsburg, PA 15317

  24. Backreedy RI, Jones JM, Ma L, Pourkashanian M, Williams A, Arenillas A, Arias B, Pis JJ, Rubiera F (2005) Prediction of unburned carbon and NOxin a tangentially fired power station using single coals and blends. Fuel 84(17):2196–2203

    Article  Google Scholar 

  25. Ku X, Li T, Løvås T (2014) Eulerian-lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor. Energy Fuel 28(8):5184–5196

    Article  Google Scholar 

  26. Fernando N, Narayana M, Wickramaarachchi WAMKP (2017) The effects of air velocity, temperature and particle size on low-temperature bed drying of wood chips. Biomass Convers Biorefinery

  27. Peters B, Schröder E, Bruch C, Nussbaumer T (2002) Measurements and particle resolved modelling of heat-up and drying of a packed bed. Biomass Bioenergy 23(4):291–306

    Article  Google Scholar 

  28. Grønli MG (1996) A theoretical and experimental study of the thermal degradation of biomass. The Norwegian University of Science and Technology

  29. Duffy N (2012) Investigation of biomass combustion in grate furnaces using CFD. Ph.D.dissertation, Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway

  30. Sand U, Sandberg J, Larfeldt J, Bel Fdhila R (2008) Numerical prediction of the transport and pyrolysis in the interior and surrounding of dry and wet wood log. Appl Energy 85(12):1208–1224

    Article  Google Scholar 

  31. Nachenius RW, Ronsse F, Venderbosch RH, Prins W (2013) Biomass pyrolysis. In Chemical Engineering for Renewables Conversion, 1st edn, vol 42, Elsevier, pp 83–89

  32. Duffy NTM, Eaton JA (2013) Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD. Combust Flame 160(10):2204–2220

    Article  Google Scholar 

  33. Lu H, Robert W, Peirce G, Ripa B, Baxter LL (2008) Comprehensive study of biomass particle combustion. Energy Fuel 22(4):2826–2839

    Article  Google Scholar 

  34. Wang Y, Yan L (2008) CFD studies on biomass thermochemical conversion. Int J Mol Sci 9(6):1108–1130

    Article  Google Scholar 

  35. Yang YB, Goodfellow J, Sharifi VN, Swithenbank J (2006) Investigation of biomass combustion systems using CFD techniques: a parametric study of packed-bed burning characteristics. Prog Comput Fluid Dyn 6:262–271

    Article  Google Scholar 

  36. Van Der Lans RP, Pedersen LT, Jensen A, Glarborg P (2000) Modelling and experiments of straw combustion in a grate furnace. Biomass Bioenergy 19:199–208

    Article  Google Scholar 

  37. Juřena T (2012) Numerical modelling of grate combustion. Vutium Vutbr Cz

  38. Yang YB, Ryu C, Goodfellow J, Sharifi VN, Swithenbank J (2004) Modelling waste combustion in grate furnaces. Process Saf Environ Prot 82(3):208–222

    Article  Google Scholar 

  39. Kurz D, Schnell U, Scheffknecht G (2012) CFD simulation of wood chip combustion on a grate using an Euler–Euler approach. Combust Theory Model 16(2):251–273

    Article  Google Scholar 

  40. Frigerio S, Thunman H, Leckner B, Hermansson S (Apr. 2008) Estimation of gas phase mixing in packed beds. Combust Flame 153(1–2):137–148

    Article  Google Scholar 

  41. Perera MNKUC Kissinger method: The sequential approach and DAEM forkinetic study of Rubber and Gliricidia. Accepetd Publ J Natl Sci Found Sri Lanka

  42. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  Google Scholar 

  43. Ström H, Thunman H (2013) A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion. Appl Energy 112:808–817

    Article  Google Scholar 

  44. Babu B, Chaurasia A (2003) Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Convers Manag 44(14):2251–2275

    Article  Google Scholar 

  45. Ström H, Thunman H (2013) CFD simulations of biofuel bed conversion: a submodel for the drying and devolatilization of thermally thick wood particles. Combust Flame 160(2):417–431

    Article  Google Scholar 

  46. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena

    Google Scholar 

  47. Fernando N, Narayana M (2016) A comprehensive two dimensional computational fluid dynamics model for an updraft biomass gasifier. Renew Energy 99:698–710

    Article  Google Scholar 

  48. Sharma AK (2008) Equilibrium and kinetic modeling of char reduction reactions in a downdraft biomass gasifier: a comparison. Sol Energy 82(10):918–928

    Article  Google Scholar 

  49. Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuel 17(6):1510–1521

    Article  Google Scholar 

  50. Bin Yang Y, Ryu C, Khor A, Sharifi VN, Swithenbank J (2005) Fuel size effect on pinewood combustion in a packed bed. Fuel 84(16):2026–2038

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University of Moratuwa, Sri Lanka, for providing experimental facilities for this research and Mrs. Dimuthu Rajapaksha for sharing experimental data from her research work for the validation of the presented mathematical model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Upuli C. Perera.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perera, K.U.C., Narayana, M. Modelling of particle size effect on Equivalence Ratio requirement for wood combustion in fixed beds. Biomass Conv. Bioref. 9, 183–199 (2019). https://doi.org/10.1007/s13399-018-0348-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-018-0348-0

Keywords

Navigation