Skip to main content

Advertisement

Log in

Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Fast pyrolysis bio-oil (FPBO) from lignocellulosic feedstocks has been successfully used as a fuel for boilers in heating applications. However, the oil quality limits application as a transport fuel due in part to the high oxygen and resulting acid content of the pyrolysis oil which complicates storage, handling and use in traditional petroleum based systems. Reduction of the acid or oxygen content can be accomplished via a number of refinery approaches from catalytic upgrading of the liquid post production to co-pyrolysis. While past reviews have focused on catalytic upgrading of the post-production oil, this work compares studies in post-production catalytic processes, in situ and ex situ pyrolysis vapour upgrading and co-pyrolysis. The review includes studies of “natural” additives/catalysts, sourced from waste biomass, as the co-pyrolysis material or catalyst. Additive/catalysts sourced from waste biomass are potentially a more sustainable approach than commercial catalysts. In general, upgrading the liquid post pyrolysis can improve quality; however, the overall oil yield decreases and cost increases due to the additional upgrading step. Co-pyrolysis and/or in and ex situ vapour upgrading during pyrolysis potentially enhance FPBO quality while recovering high-value chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AAEM:

Alkali and alkaline Earth metals

ASTM:

American Society of Testing and Materials

BTX:

Mixtures of benzene, toluene, and the three xylene isomers

CFP:

Catalytic fast pyrolysis

EFB:

Empty fruit bunch

FPBO:

Fast pyrolysis bio-oil

GC/MS:

Gas chromatography-mass spectrometry

HDO:

Hydrodeoxygenation

HHV:

Higher heating value

HYD:

Hydrogenation

LHV:

Lower heating value

MW:

Molecular weight

NCG:

Non-condensable pyrolysis gases

TAN:

Total acid number

TGA:

Thermogravimetric analysis

TGRP:

Tail gas recycling pyrolysis

VGO:

Vacuum gas oil

References

  1. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  2. Butler E, Devlin G, Meier D, McDonnell K (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew Sust Energ Rev 15:4171–4186. https://doi.org/10.1016/j.rser.2011.07.035

    Article  Google Scholar 

  3. Elliott DC, Meier D, Oasmaa A et al (2017) Results of the international energy agency round robin on fast pyrolysis bio-oil production. Energy Fuels 31:5111–5119. https://doi.org/10.1021/acs.energyfuels.6b03502

    Article  Google Scholar 

  4. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  Google Scholar 

  5. Branca C, Giudicianni P, Di Blasi C (2003) GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. Ind Eng Chem Res 42:3190–3202. https://doi.org/10.1021/ie030066d

    Article  Google Scholar 

  6. Zhang L, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sust Energ Rev 24:66–72. https://doi.org/10.1016/j.rser.2013.03.027

    Article  Google Scholar 

  7. Staš M, Kubička D, Chudoba J, Pospíšil M (2014) Overview of analytical methods used for chemical characterization of pyrolysis bio-oil. Energy Fuel 28:385–402. https://doi.org/10.1021/ef402047y

    Article  Google Scholar 

  8. Veses A, Aznar M, López JM et al (2015) Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel 141:17–22. https://doi.org/10.1016/j.fuel.2014.10.044

    Article  Google Scholar 

  9. Xu X, Zhang C, Zhai Y, et al (2014) Upgrading of Bio-Oil Using Supercritical 1-Butanol over a Ru/C Heterogeneous Catalyst: Role of the Solvent. Energy & Fuels 28:4611–4621. https://doi.org/10.1021/ef500968a

  10. Cruz Ceballos DC, Hawboldt K, Hellleur R (2015) Effect of production conditions on self-heating propensity of torrefied sawmill residues. Fuel 160:227–237. https://doi.org/10.1016/j.fuel.2015.07.097

    Article  Google Scholar 

  11. Bamdad H, Hawboldt K, MacQuarrie S (2017) A review on common adsorbents for acid gases removal: focus on biochar. Renew Sust Energ Rev 1–16. doi: https://doi.org/10.1016/j.rser.2017.05.261

  12. Bamdad H, Hawboldt K (2016) Comparative study between physicochemical characterization of biochar and metal organic frameworks (MOFs) as gas adsorbents. Can J Chem Eng 94:2114–2120. https://doi.org/10.1002/cjce.22595

    Article  Google Scholar 

  13. Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Elsevier Inc., Oxford

    Google Scholar 

  14. Wiggers VR, Wisniewski A, Madureira LAS et al (2009) Biofuels from waste fish oil pyrolysis: continuous production in a pilot plant. Fuel 88:2135–2141. https://doi.org/10.1016/j.fuel.2009.02.006

    Article  Google Scholar 

  15. Chiaramonti D, Bonini M, Fratini E et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 2: tests in diesel engines. Biomass Bioenergy 25:101–111. https://doi.org/10.1016/S0961-9534(02)00184-8

    Article  Google Scholar 

  16. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598. https://doi.org/10.1021/Ef034067u

    Article  Google Scholar 

  17. van de Beld B, Holle E, Florijn J (2018) The use of a fast pyrolysis oil—ethanol blend in diesel engines for chp applications. Biomass Bioenergy 110:114–122. https://doi.org/10.1016/j.biombioe.2018.01.023

    Article  Google Scholar 

  18. Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sust Energ Rev 16:4406–4414. https://doi.org/10.1016/j.rser.2012.04.028

    Article  Google Scholar 

  19. Lehto J, Oasmaa A, Solantausta Y et al (2014) Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Appl Energy 116:178–190. https://doi.org/10.1016/j.apenergy.2013.11.040

    Article  Google Scholar 

  20. Mei Y, Liu R, Zhang L (2017) Influence of industrial alcohol and additive combination on the physicochemical characteristics of bio-oil from fast pyrolysis of pine sawdust in a fluidized bed reactor with hot vapor filter. J Energy Inst 90:923–932. https://doi.org/10.1016/j.joei.2016.08.002

    Article  Google Scholar 

  21. Lujaji FC, Boateng AA, Schaffer M et al (2016) Spray atomization of bio-oil/ethanol blends with externally mixed nozzles. Exp Thermal Fluid Sci 71:146–153. https://doi.org/10.1016/j.expthermflusci.2015.10.020

    Article  Google Scholar 

  22. Krutof A, Hawboldt K (2016) Blends of pyrolysis oil, petroleum, and other bio-based fuels: a review. Renew Sust Energ Rev 59:406–419. https://doi.org/10.1016/j.rser.2015.12.304

    Article  Google Scholar 

  23. Oasmaa A, Fonts I, Pelaez-Samaniego MR et al (2016) Pyrolysis oil multiphase behavior and phase stability: a review. Energy Fuels 30:6179–6200. https://doi.org/10.1021/acs.energyfuels.6b01287

    Article  Google Scholar 

  24. Peralta J, Williams RC, Rover M, Silva HMRD (2012) Development of rubber-modified fractionated bio-oil for use as noncrude petroleum binder in flexible pavements. Transp Res Board 23–36

  25. IEA Bioenergy Task 34 Direct Thermochemical Liquifaction (2016) Pyrolysis demoplant database. http://task34.ieabioenergy.com/publications/pyrolysis-demoplant-database/. Accessed 17 May 2018

  26. Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renew Sust Energ Rev 50:1081–1096. https://doi.org/10.1016/j.rser.2015.04.193

    Article  Google Scholar 

  27. Zhang L, Kong SC (2012) Multicomponent vaporization modeling of bio-oil and its mixtures with other fuels. Fuel 95:471–480. https://doi.org/10.1016/j.fuel.2011.12.009

    Article  Google Scholar 

  28. Nguyen TB, De Hemptinne JC, Creton B, Kontogeorgis GM (2014) Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds with water. Fluid Phase Equilib 372:113–125. https://doi.org/10.1016/j.fluid.2014.03.028

    Article  Google Scholar 

  29. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  30. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608. https://doi.org/10.1016/j.rser.2014.06.013

    Article  Google Scholar 

  31. Bridgwater AV (2018) Challenges and opportunities in fast pyrolysis of biomass: part I. Johnson Mathhey Technol Rev 62:118–130. https://doi.org/10.1595/205651318X696693

    Article  Google Scholar 

  32. Piskorz J, Scott DS, Radlein D (1988) Pyrolysis oils from biomass. 376:167–178. https://doi.org/10.1021/bk-1988-0376

  33. Alsbou E, Helleur R (2013) Whole sample analysis of bio-oils and thermal cracking fractions by Py-GC/MS and TLC-FID. J Anal Appl Pyrolysis 101:222–231. https://doi.org/10.1016/j.jaap.2013.01.003

    Article  Google Scholar 

  34. Elliott DC, Oasmaa A, Meier D et al (2012) Results of the IEA round robin on viscosity and aging of fast pyrolysis bio-oils: long-term tests and repeatability. Energy Fuel 26:7362–7366. https://doi.org/10.1021/ef301607v

    Article  Google Scholar 

  35. Fermoso J, Pizarro P, Coronado JM, Serrano DP (2017) Advanced biofuels production by upgrading of pyrolysis bio-oil. Wiley Interdiscip Rev Energy Environ 6. https://doi.org/10.1002/wene.245

  36. Abnisa F, Wan Daud WMA (2014) A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag 87:71–85. https://doi.org/10.1016/j.enconman.2014.07.007

    Article  Google Scholar 

  37. Oasmaa A, Källi A, Lindfors C et al (2012) Guidelines for transportation, handling, and use of fast pyrolysis bio-oil. 1. Flammability and toxicity. Energy Fuel 26:3864–3873. https://doi.org/10.1021/ef300418d

    Article  Google Scholar 

  38. Bridgwater AV (2011) Upgrading fast pyrolysis liquids. In: Brown RC (ed) Thermochemical processing of biomass: conversion into fuels, chemicals and power. John Wiley & Sons, Ltd., Chichester, pp 157–199

    Chapter  Google Scholar 

  39. Ruddy DA, Schaidle JA, Ferrell JR III et al (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16:454–490. https://doi.org/10.1039/C3GC41354C

    Article  Google Scholar 

  40. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood / biomass for bio-oil: a critical review. Energy Fuel 20:848–889. https://doi.org/10.1021/ef0502397

    Article  Google Scholar 

  41. Diebold JP (2000) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. Golden, Colorado

    Google Scholar 

  42. Butcher T (2015) Ensyn bio-oil powering New Hampshire hospital. IEA Bioenergy Agreem. Task 34 Newsl. - PyNe 37 1–34

  43. Venderbosch RH, Ardiyanti AR, Wildschut J et al (2010) Stabilization of biomass-derived pyrolysis oils. J Chem Technol Biotechnol 85:674–686. https://doi.org/10.1002/jctb.2354

    Article  Google Scholar 

  44. Gollakota ARK, Reddy M, Subramanyam MD, Kishore N (2016) A review on the upgradation techniques of pyrolysis oil. Renew Sust Energ Rev 58:1543–1568. https://doi.org/10.1016/j.rser.2015.12.180

    Article  Google Scholar 

  45. Yang Z, Kumar A, Huhnke RL (2015) Review of recent developments to improve storage and transportation stability of bio-oil. Renew Sust Energ Rev 50:859–870. https://doi.org/10.1016/j.rser.2015.05.025

    Article  Google Scholar 

  46. Liu C, Wang H, Karim AM, et al (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:ASAP. https://doi.org/10.1039/c3cs60414d

  47. Veses A, Aznar M, Martínez I et al (2014) Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresour Technol 162:250–258. https://doi.org/10.1016/j.biortech.2014.03.146

    Article  Google Scholar 

  48. Zhang J, Toghiani H, Mohan D, et al (2007) Product analysis and thermodynamic simulations from the pyrolysis of several biomass feedstocks Energy 2373–2385. https://doi.org/10.1021/ef0606557

  49. Serrano DP, Melero JA, Morales G et al (2017) Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catal Rev Sci Eng 60:1–70. https://doi.org/10.1080/01614940.2017.1389109

    Article  Google Scholar 

  50. Stefanidis SD, Heracleous E, Patiaka DT et al (2015) Optimization of bio-oil yields by demineralization of low quality biomass. Biomass Bioenergy 83:105–115. https://doi.org/10.1016/j.biombioe.2015.09.004

    Article  Google Scholar 

  51. Zhou S, Wang Z, Liaw SS et al (2013) Effect of sulfuric acid on the pyrolysis of Douglas fir and hybrid poplar wood: Py-GC/MS and TG studies. J Anal Appl Pyrolysis 104:117–130. https://doi.org/10.1016/j.jaap.2013.08.013

    Article  Google Scholar 

  52. Zhou S, Osman NB, Li H et al (2013) Effect of sulfuric acid addition on the yield and composition of lignin derived oligomers obtained by the auger and fast pyrolysis of Douglas-fir wood. Fuel 103:512–523. https://doi.org/10.1016/j.fuel.2012.07.052

    Article  Google Scholar 

  53. Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822. https://doi.org/10.1016/0016-2361(95)80013-8

    Article  Google Scholar 

  54. Mullen CA, Tarves PC, Boateng AA (2017) Role of potassium exchange in catalytic pyrolysis of biomass over ZSM-5: formation of alkyl phenols and furans. ACS Sustain Chem Eng 5:2154–2162. https://doi.org/10.1021/acssuschemeng.6b02262

    Article  Google Scholar 

  55. Fermoso J, Hernando H, Jiménez-Sánchez S et al (2017) Bio-oil production by lignocellulose fast-pyrolysis: isolating and comparing the effects of indigenous versus external catalysts. Fuel Process Technol 167:563–574. https://doi.org/10.1016/j.fuproc.2017.08.009

    Article  Google Scholar 

  56. Oasmaa A, Sundqvist T, Kuoppala E et al (2015) Controlling the phase stability of biomass fast pyrolysis bio-oils. Energy Fuels 29:4373–4381. https://doi.org/10.1021/acs.energyfuels.5b00607

    Article  Google Scholar 

  57. Zhang M, Wu H (2014) Phase behavior and fuel properties of bio-oil/glycerol/methanol blends. Energy Fuel 28:4650–4656. https://doi.org/10.1021/ef501176z

    Article  Google Scholar 

  58. Krutof A (2014) Blending of bio-oils derived from pyrolysis of woody biomass with oil extracted from fish waste to determine applicability as a fuel oil. Mannheim University of Applied Sciences, Mannheim

    Google Scholar 

  59. Karimi E, Teixeira IF, Gomez A et al (2014) Synergistic co-processing of an acidic hardwood derived pyrolysis bio-oil with alkaline red mud bauxite mining waste as a sacrificial upgrading catalyst. Appl Catal B Environ 145:187–196. https://doi.org/10.1016/j.apcatb.2013.02.007

    Article  Google Scholar 

  60. Furimsky E (2013) Hydroprocessing challenges in biofuels production. Catal Today 217:13–56. https://doi.org/10.1016/j.cattod.2012.11.008

    Article  Google Scholar 

  61. Joyce BL, Stewart CN (2012) Designing the perfect plant feedstock for biofuel production: using the whole buffalo to diversify fuels and products. Biotechnol Adv 30:1011–1022. https://doi.org/10.1016/j.biotechadv.2011.08.006

    Article  Google Scholar 

  62. de Miguel Mercader F, Groeneveld MJ, Kersten SRA, et al (2010) Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units. Appl Catal B Environ 96:57–66. https://doi.org/10.1016/j.apcatb.2010.01.033

  63. Pinho ADR, De Almeida MBB, Mendes FL et al (2015) Co-processing raw bio-oil and gasoil in an FCC unit. Fuel Process Technol 131:159–166. https://doi.org/10.1016/j.fuproc.2014.11.008

    Article  Google Scholar 

  64. Li B, Lv W, Zhang Q et al (2014) Pyrolysis and catalytic upgrading of pine wood in a combination of auger reactor and fixed bed. Fuel 129:61–67. https://doi.org/10.1016/j.fuel.2014.03.043

    Article  Google Scholar 

  65. Baldwin RM, Feik CJ (2013) Bio-oil stabilization and upgrading by hot gas filtration. Energy Fuel 27:3224–3238. https://doi.org/10.1021/ef400177t

    Article  Google Scholar 

  66. Zhang H, Xiao R, Wang D et al (2011) Biomass fast pyrolysis in a fluidized bed reactor under N 2, CO 2, CO, CH 4 and H 2 atmospheres. Bioresour Technol 102:4258–4264. https://doi.org/10.1016/j.biortech.2010.12.075

    Article  Google Scholar 

  67. Mullen CA, Boateng AA, Goldberg NM (2013) Production of deoxygenated biomass fast pyrolysis oils via product gas recycling. Energy Fuels 27:3867–3874. https://doi.org/10.1021/ef400739u

    Article  Google Scholar 

  68. Elkasabi Y, Mullen CA, Boateng AA (2014) Distillation and isolation of commodity chemicals from bio-oil made by tail-gas reactive pyrolysis. ACS Sustain Chem Eng 2:2042–2052. https://doi.org/10.1021/sc5002879

    Article  Google Scholar 

  69. Adjaye JD, Sharma RK, Bakhshi NN (1992) Characterization and stability analysis of wood-derived bio-oil. Fuel Process Technol 31:241–256. https://doi.org/10.1016/0378-3820(92)90023-J

    Article  Google Scholar 

  70. Lu Q, Zhang Z-F, Dong C-Q, Zhu X-F (2010) Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study. Energies 3:1805–1820. https://doi.org/10.3390/en3111805

    Article  Google Scholar 

  71. Yathavan B, Agblevor FA (2013) Catalytic pyrolysis of pinyon-juniper using red mud and HZSM-5. Energy Fuel 27:6858–6865. https://doi.org/10.1021/ef401853a

    Article  Google Scholar 

  72. Lim X, Sanna A, Andrésen JM (2014) Influence of red mud impregnation on the pyrolysis of oil palm biomass-EFB. Fuel 119:259–265. https://doi.org/10.1016/j.fuel.2013.11.057

    Article  Google Scholar 

  73. Yathavan B (2013) Conventional and catalytic pyrolysis of pinyon juniper biomass. All Grad Theses Diss Paper 2053

  74. Lin Y, Zhang C, Zhang M, Zhang J (2010) Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy Fuel 24:5686–5695. https://doi.org/10.1021/ef1009605

    Article  Google Scholar 

  75. Veses A, Aznar M, Callén MS et al (2016) An integrated process for the production of lignocellulosic biomass pyrolysis oils using calcined limestone as a heat carrier with catalytic properties. Fuel 181:430–437. https://doi.org/10.1016/j.fuel.2016.05.006

    Article  Google Scholar 

  76. Tangboriboon N, Kunanuruksapong R, Sirivat A et al (2012) Preparation and properties of calcium oxide from eggshells via calcination. Mater Sci Pol 30:313–322. https://doi.org/10.2478/s13536-012-0055-7

    Article  Google Scholar 

  77. Tekin K (2015) Hydrothermal conversion of Russian olive seeds into crude bio-oil using a CaO catalyst derived from waste mussel shells. Energy Fuels 29:4382–4392. https://doi.org/10.1021/acs.energyfuels.5b00724

    Article  Google Scholar 

  78. Food and Agriculture Organization (2017) Fisheries and Aquaculture Department. Statistics. www.fao.org/fishery/statistics/en. Accessed 1 May 2017

  79. Kerton FM, Liu Y, Murphy JN, Hawboldt K (2015) Renewable resources from the oceans: adding value to the by-products of the aquaculture and fishing industries. 2014 Ocean—St John’s, Ocean 2014 14–16. doi: https://doi.org/10.1109/OCEANS.2014.7002983

  80. Kerton FM, Liu Y, Omari KW, Hawboldt K (2013) Green chemistry and the ocean-based biorefinery. Green Chem 15:860–871. https://doi.org/10.1039/c3gc36994c

    Article  Google Scholar 

  81. Abeynaike A, Wang L, Jones MI, Patterson DA (2011) Pyrolysed powdered mussel shells for eutrophication control: effect of particle size and powder concentration on the mechanism and extent of phosphate removal. Asia-Pac J Chem Eng 6:231–243. https://doi.org/10.1002/apj.426

    Article  Google Scholar 

  82. Barros MC, Bello PM, Bao M, Torrado JJ (2009) From waste to commodity: transforming shells into high purity calcium carbonate. J Clean Prod 17:400–407. https://doi.org/10.1016/j.jclepro.2008.08.013

    Article  Google Scholar 

  83. Murphy JN, Kerton FM (2017) Characterization and utilization of waste streams from mollusc aquaculture and fishing industries. In: Kerton FM, Yan N (eds) Fuels, chemicals and materials from the ocean and aquatic sources. John Wiley & Sons Ltd, pp 189–227

  84. Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702. https://doi.org/10.1039/a604512j

    Article  Google Scholar 

  85. Nebel H, Neumann M, Mayer C, Epple M (2008) On the structure of amorphous calcium carbonate—a detailed study by solid-state NMR spectroscopy. Inorg Chem 47:7874–7879. https://doi.org/10.1021/ic8007409

    Article  Google Scholar 

  86. Zhang L, Zhang B, Yang Z, Yan Y (2014) Pyrolysis behavior of biomass with different Ca-based additives. RSC Adv 4:39145–39155. https://doi.org/10.1039/C4RA04865B

    Article  Google Scholar 

  87. Han L, Wang Q, Ma Q et al (2010) Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis. J Anal Appl Pyrolysis 88:199–206. https://doi.org/10.1016/j.jaap.2010.04.007

    Article  Google Scholar 

Download references

Funding

We would like to thank BioFuelNet, the National Science and Engineering Research Council of Canada (NSERC), Centre for Forest Science and Innovation (CFSI, NL Provincial Government), Newfoundland Aquaculture Industry Association (NAIA) and the Memorial University of Newfoundland (MUN) who have contributed to funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krutof.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutof, A., Hawboldt, K.A. Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis. Biomass Conv. Bioref. 8, 775–787 (2018). https://doi.org/10.1007/s13399-018-0326-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-018-0326-6

Keywords

Navigation