Skip to main content
Log in

A quick and effective method for evaluating substrate-enzyme systems in the enzymatic hydrolysis of lignocellulosic biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This work describes a microreaction technique to carry out hydrolysis of certain substrate by certain enzyme under several conditions, and reports its usefulness to determine effective process conditions and to compare performances between different systems substrate-enzyme, in a quick and economic way. The microreaction system consists of microtubes, as microreactors, that are placed into a thermomixer, allowing a set of 24 experiments at a certain constant temperature but with different pH and substrate-enzyme ratios. The outcomes of the numerous experiments are processed via response surface methodology and means analysis. In order to illustrate the technique effectiveness, it is discussed the comparison of two commercial enzyme complexes, and two delignification procedures of wheat straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parajuli R, Dalgaard T, Jørgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjørring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sust Energ Rev 43:244–263. https://doi.org/10.1016/j.rser.2014.11.041

    Article  Google Scholar 

  2. Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sust Energ Rev 73:205–2014. https://doi.org/10.1016/j.rser.2017.01.070

    Article  Google Scholar 

  3. Gottumukkala LD, Haigh K, Görgens J (2017) Trends and advances in conversion of lignocellulosic biomass to biobutanol: microbes, bioprocesses and industrial viability. Renew Sust Energ Rev 76:963–973. https://doi.org/10.1016/j.rser.2017.03.030

    Article  Google Scholar 

  4. Taghizadeh-Alisaraei A, Hosseini SH, Ghobadian B, Motevali A (2017) Biofuel production from citrus wastes: a feasibility study in Iran. Renew Sust Energ Rev 69:1100–1112. https://doi.org/10.1016/j.rser.2016.09.102

    Article  Google Scholar 

  5. Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310. https://doi.org/10.1016/j.biortech.2016.04.092

    Article  Google Scholar 

  6. Yang M, Kuittinen S, Vepsäläinen J, Zhang J, Pappinen A (2017) Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement. Bioresour Technol 243:126–143. https://doi.org/10.1016/j.biortech.2017.06.021

    Article  Google Scholar 

  7. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653. https://doi.org/10.1016/j.rser.2016.07.015

    Article  Google Scholar 

  8. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

    Article  Google Scholar 

  9. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501. https://doi.org/10.1016/j.rser.2016.12.076

    Article  Google Scholar 

  10. Ballesteros M (2010) Enzymatic hydrolysis of lignocellulosic biomass. In: Waldron K (ed) Bioalcohol production: biochemical conversion of lignocellulosic biomass. Woodhead Publishing Limited, Cambridge, pp 159–177. https://doi.org/10.1533/9781845699611.2.159

    Chapter  Google Scholar 

  11. Marcos M, García-Cubero MT, González-Benito G, Coca M, Bolado S, Lucas S (2012) Optimization of the enzymatic hydrolysis conditions of steam-exploded wheat straw for maximum glucose and xylose recovery. J Chem Technol Biotechnol 88(2):237–246. https://doi.org/10.1002/jctb.3820

    Article  Google Scholar 

  12. Eliana C, Jorge R, Juan P, Luis R (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47. https://doi.org/10.1016/j.fuel.2013.10.055

    Article  Google Scholar 

  13. Adney B, Baker J (1996) Measurement of cellulase activities, Laboratory Analytical Procedure, National Renewable Energy Laboratory, Technical Report NREL/TP 510-42628

  14. Martins LF, Kolling D, Camassola M, Dillon AJP, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99(5):1417–1424. https://doi.org/10.1016/j.biortech.2007.01.060

    Article  Google Scholar 

  15. Hamzah F, Idris A, Shuan TK (2011) Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass Bioenergy 35(3):1055–1059. https://doi.org/10.1016/j.biombioe.2010.11.020

    Article  Google Scholar 

  16. Brummer V, Jurena T, Hlavacek V, Omelkova J, Bebar L, Gabriel P, Stehlik P (2014) Enzymatic hydrolysis of pretreated waste paper - source of raw material for production of liquid biofuels. Bioresour Technol 152:543–547. https://doi.org/10.1016/j.biortech.2013.11.030

    Article  Google Scholar 

  17. Riedlberger P, Weuster-Botz D (2012) New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis. Bioresour Technol 106:138–146. https://doi.org/10.1016/j.biortech.2011.12.019

    Article  Google Scholar 

  18. Palmqvist B, Wiman M, Lidén G (2011) Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption. Biotechnol Biofuels 4(1):10. https://doi.org/10.1186/1754-6834-4-10

    Article  Google Scholar 

  19. Świątek K, Lewandowska M, Świątek M, Bednarski W, Brzozowski B (2014) The improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus giganteus polysaccharides. Bioresour Technol 151:323–331. https://doi.org/10.1016/j.biortech.2013.10.090

    Article  Google Scholar 

  20. Ertas M, Han Q, Jameel H, Chang HM (2014) Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresour Technol 152:259–266. https://doi.org/10.1016/j.biortech.2013.11.026

    Article  Google Scholar 

  21. Longwell CK, Labanieh L, Cochran JR (2017) High-throughput screening technologies for enzyme engineering. Curr Opin Biotechnol 48:196–202. https://doi.org/10.1016/j.copbio.2017.05.012

    Article  Google Scholar 

  22. Yu X, Liu Y, Cui Y, Cheng Q, Zhang Z, Lu JH, Meng Q, Teng L, Ren X (2016) Measurement of filter paper activities of cellulase with microplate-based assay. Saudi J Biol Sci 23(1):S93–S98. https://doi.org/10.1016/j.sjbs.2015.06.018

    Article  Google Scholar 

  23. Jäger G, Wulfhorst H, Zeithammel EU, Elinidou E, Spiess AC, Büchs J (2011) Screening of cellulases for biofuel production: online monitoring of the enzymatic hydrolysis of insoluble cellulose using high-throughput scattered light detection. Biotechnol J 6(1):74–85. https://doi.org/10.1002/biot.201000387

    Article  Google Scholar 

  24. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002

    Article  Google Scholar 

  25. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

    Article  Google Scholar 

  26. AOAC International (2005) Official methods of analysis, 18th edition, Method 973.18 Fiber (Acid Detergent) and Lignin in Animal Feed, Maryland USA

  27. Doner LW, Hicks KB (1997) Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem 74(2):176–181. https://doi.org/10.1094/CCHEM.1997.74.2.176

    Article  Google Scholar 

  28. Sun R, Tomkinson J, Fang J (2000) Isolation and characterization of hemicelluloses and cellulose from rye straw by alkaline peroxide extraction. Cellulose 7(1):87–107. https://doi.org/10.1023/A:1009245100275

    Article  Google Scholar 

  29. Sun R, Tomkinson J, Wang S, Zhu W (2000) Characterization of lignins from wheat straw by alkaline peroxide treatment. Polym Degrad Stab 67(1):101–109. https://doi.org/10.1016/S0141-3910(99)00099-3

    Article  Google Scholar 

  30. Dowe NS, Lussier JM, Gleason RM (2008) Novel method for the rapid simultaneous measurement of xylose and glucose for bioethanol production. www.ysi.com. Accessed 23 Aug 2017

  31. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  32. Montgomery DC (2013) Design and analysis of experiments. New Jersey

  33. Coimbra MC, Duque A, Saéz F, Manzanares P, Garcia-Cruz CH, Ballesteros M (2016) Sugar production from wheat straw biomass by alkaline extrusion and enzymatic hydrolysis. Renew Energ 86:1060–1068. https://doi.org/10.1016/j.renene.2015.09.026

    Article  Google Scholar 

  34. Cabrera E, Muñoz MJ, Martín R, Caro I, Curbelo C, Díaz AB (2014) Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresour Technol 167:1–7. https://doi.org/10.1016/j.biortech.2014.05.103

    Article  Google Scholar 

  35. Rojas-Rejón OA, Sánchez A (2014) The impact of particle size and initial solid loading on thermochemical pretreatment of wheat straw for improving sugar recovery. Bioprocess Biosyst Eng 37(7):1427–1436. https://doi.org/10.1007/s00449-013-1115-z

    Article  Google Scholar 

  36. Eveleigh DE, Mandels M, Andreotti R, Roche C (2009) Measurement of saccharifying cellulase. Biotechnol Biofuels 2(1):21. https://doi.org/10.1186/1754-6834-2-21

    Article  Google Scholar 

  37. Grosch JH, Sieben M, Lattermann C, Kauffmann K, Büchs J, Spieß AC (2016) Enzyme activity deviates due to spatial and temporal temperature profiles in commercial microtiter plate readers. Biotechnol J 11(4):519–529. https://doi.org/10.1002/biot.201500422

    Article  Google Scholar 

Download references

Funding

Financial support from Secretary of Energy (SENER), México (Project SENER 2009-150001) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Hernández-Escoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Beltrán, J.U., Cervantes-Quintero, K. & Hernández-Escoto, H. A quick and effective method for evaluating substrate-enzyme systems in the enzymatic hydrolysis of lignocellulosic biomass. Biomass Conv. Bioref. 8, 437–446 (2018). https://doi.org/10.1007/s13399-017-0297-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0297-z

Keywords

Navigation