Biomass Conversion and Biorefinery

, Volume 8, Issue 2, pp 245–254 | Cite as

Miscanthus as biogas feedstock: influence of harvest time and stand age on the biochemical methane potential (BMP) of two different growing seasons

  • Axel Schmidt
  • Sébastien Lemaigre
  • Thorsten Ruf
  • Philippe Delfosse
  • Christoph Emmerling
Original Article


The use of perennial crops instead of maize as feedstock in biogas plants can be associated with multiple environmental and economic benefits. One promising species in this domain is the C4-grass Miscanthus × giganteus. The use of its biomass can mitigate carbon dioxide emissions by substitution of fossil fuels, sequestration of carbon in soils and reduced fertilizing. We compared Miscanthus from two different old fields (established 1995 and 2008) at three different harvest dates over 2 years. While the harvest in spring, like usual for combustion purposes, led to relatively low methane yields per hectare, the harvest in autumn, when the biomass is still green, exceeded the average methane yields per hectare of maize. The comparison of different old Miscanthus fields showed that there is no significant difference in terms of biomass yield, specific BMP and BMP per hectare. Only the influence of repeated autumn harvest showed differences in the methane production per hectare between both stand ages. The methane yield of the younger stand did not change considerable, while in the older stand, the productivity decreased about 15% after 1 year.


Miscanthus Perennial energy crop Anaerobic digestion Biochemical methane potential Harvest date Stand age 



Biochemical methane potential


Fresh matter


Normalized litre (1013 hPa, 0 °C)


Municipal wastewater treatment plant


Standard deviation


Standard error


Total solids = dry matter


Volatile solids = organic dry matter


percent per weight



This work has been financially supported by the Ministry of Education, Science, Youth & Culture Rhineland-Palatinate, Germany, within the Research Initiative: Trier Centre of Sustainable Studies (TriCSS), 04/2013–12/2016, University of Trier.

The authors would like to thank Marie Fossépré, Anaïs Noo and Bénédicte De Vos for their valuable support conducting the experiments. We also acknowledge the farmer Franz-Josef Koch for the possibility to work on his Miscanthus fields.


  1. 1.
    IPCC (2014) Summary for policymakers. In: Edenhofer O, Pichs-Madruga P, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, Stechow C, Zwickel T, Minx JC (eds) Climate change 2014. Mitigation of climate change. Contribution of working group III to the fifth Assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NYGoogle Scholar
  2. 2.
    European Parliament (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, L140/16, Official J. Eur. UnionGoogle Scholar
  3. 3.
    Graebig M, Bringezu S, Fenner R (2010) Comparative analysis of environmental impacts of maize-biogas and photovoltaics on a land use basis. Sol Energy 84:1255–1263CrossRefGoogle Scholar
  4. 4.
    Herrmann A (2013) Biogas production from maize: current state, challenges and prospects. Agronomic and environmental aspects. Bioenergy Res 6:372–387CrossRefGoogle Scholar
  5. 5.
    Holland RA, Eigenbrod F, Muggeridge A, Brown G, Clarke D, Taylor G (2015) A synthesis of the ecosystem services impact of second generation bioenergy crop production. Renew Sust Energ Rev 46:30–40CrossRefGoogle Scholar
  6. 6.
    Heaton E, Clifton-Brown JC, Voigt TB, Jones MB, Long SP (2004) Miscanthus for renewable energy generation: European Union experience and projection for Illinois. Mitig Adapt Strateg Glob Chang 9:433–451CrossRefGoogle Scholar
  7. 7.
    Dohleman F, Long S (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115CrossRefGoogle Scholar
  8. 8.
    Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3:24–30CrossRefGoogle Scholar
  9. 9.
    Mayer F, Gerin PA, Noo A, Lemaigre S, Stilmant D, Schmit T, Leclech N, Ruelle L, Gennen J, von Francken-Welz H, Foucart G, Flammang J, Weyland M, Delfosse P (2014) Assessment of energy crops alternative to maize for biogas production in the greater region. Bioresour Technol 166:358–367CrossRefGoogle Scholar
  10. 10.
    Schorling M, Enders C, Voigt CA (2015) Assessing the cultivation potential of the energy crop Miscanthus × giganteus for Germany. GCB Bioenergy 7:763–773CrossRefGoogle Scholar
  11. 11.
    Semere T, Slater FM (2007) Invertebrate populations in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31:30–39CrossRefGoogle Scholar
  12. 12.
    Felten D, Emmerling C (2011) Effects of bioenergy crop cultivation on earthworm communities – a comparative study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Appl Soil Ecol 49:167–177CrossRefGoogle Scholar
  13. 13.
    Felten D, Fröba N, Fries J, Emmerling C (2013) Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus; rapeseed and maize) based on farming conditions in western Germany. Renew Energy 55:160–174CrossRefGoogle Scholar
  14. 14.
    Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop Miscanthus. Glob Chang Biol 13:2296–2307CrossRefGoogle Scholar
  15. 15.
    Hastings A, Clifton-Brown JC, Wattenbach M, Mitchell CP, Stampfl P, Smith P (2009) Future energy potential of Miscanthus in Europe. GCB Bioenergy 1:180–196CrossRefGoogle Scholar
  16. 16.
    Foereid B, de Neergaard A, Høgh-Jensen H (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol Biochem 36:1075–1085CrossRefGoogle Scholar
  17. 17.
    Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327CrossRefGoogle Scholar
  18. 18.
    Cadoux S, Riche AB, Yates NE, Machet JM (2012) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenergy 38:14–22CrossRefGoogle Scholar
  19. 19.
    Neukirchen D, Himken M, Lammel D, Czypionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309CrossRefGoogle Scholar
  20. 20.
    Himken M, Lammel D, Neukirchen D, Czypionka-Krause U, Olfs HW (1997) Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126CrossRefGoogle Scholar
  21. 21.
    Klimiuk E, Tomasz P, Wojciech B, Bogdan D (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol 101:9527–9535CrossRefGoogle Scholar
  22. 22.
    Kazimierowicz J, Dzienis L (2015) Giant Miscanthus as a substrate for biogas production. J Ecol Eng 16:139–142CrossRefGoogle Scholar
  23. 23.
    Schittenhelm S (2008) Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur J Agron 29:72–79CrossRefGoogle Scholar
  24. 24.
    Uellendahl H, Wang G, Møller HB, Jørgensen U, Skiadas IV, Gavala HN, Ahring BK (2008) Energy balance and cost-benefit analysis of biogas production from perennial crops pretreated by wet oxidation. Water Sci Technol 58(9):1841–1847CrossRefGoogle Scholar
  25. 25.
    Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse. Springer, HeidelbergCrossRefGoogle Scholar
  26. 26.
    Menardo S, Bauer A, Theuretzbacher F, Piringer G, Nilsen PJ, Balsari P, Pavliska O, Amon T (2012) Biogas production from steam-exploded Miscanthus and utilization of biogas energy and CO2 in greenhouses. Bioenergy Res 6:620–630CrossRefGoogle Scholar
  27. 27.
    Kiesel A, Lewandowski I (2015) Miscanthus as biogas substrate - cutting tolerance and potential for anaerobic digestion. GCB Bioenergy. doi: 10.1111/gcbb.12330
  28. 28.
    Wahid R, Nielsen SF, Hernandez VM, Ward AJ, Gislum R, Jørgensen U, Møller HB (2015) Methane production potential from Miscanthus sp.: effect of harvesting time, genotypes and plant fractions. Biosyst Eng 133:71–80CrossRefGoogle Scholar
  29. 29.
    Deutscher Wetterdienst (2016). Long-term mean temperature at station Trier-Zewen (station ID: 5099, 1981–2010).–10/Temperatur_1981–2010_aktStandort.txt Accessed 04 July 2016
  30. 30.
    Deutscher Wetterdienst (2016). Long-term mean precipitation at station Trier-Zewen (station ID: 5099, 1981–2010).–10/Niederschlag_1981–2010_aktStandort.txt Accessed 04 July 2016
  31. 31.
    Knörzer H, Hartung K, Piepho HP, Lewandowski I (2013) Assessment of variability in biomass yield and quality: what is an adequate size of sampling area for Miscanthus? GCB Bioenergy. doi: 10.1111/gcbb.12027
  32. 32.
    Porter MG, Murray RS (2001) The volatility of components of grass silage on oven drying an the inter-relationship between dry-matter content estimated by different analytical. Grass Forage Sci 56:405–411CrossRefGoogle Scholar
  33. 33.
    Kreuger E, Nges IA, Björnsson L (2011) Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels 4:44CrossRefGoogle Scholar
  34. 34.
    Verein Deutscher Ingenieure (2006) VDI 4630 Fermentation of organic material. Characterization of the substrate, sampling, collection of material data, fermentation testsGoogle Scholar
  35. 35.
    Raposo F, Fernández-Cegrí V, De la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098CrossRefGoogle Scholar
  36. 36.
    Iqbal Y, Lewandowski I (2014) Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process Technol 121:47–55CrossRefGoogle Scholar
  37. 37.
    Purdy SJ, Cunniff J, Maddison AL, Jones LE, Barraclough T, Castle M, Davey LC, Jones CM, Shield I, Gallagher J, Donnison I, Clifton-Brown J (2015) Seasonal carbohydrate dynamics and climate regulation of senescence in the perennial grass, Miscanthus. Bioenergy Res 8:28–41CrossRefGoogle Scholar
  38. 38.
    Lienen T, Kleyböcker A, Brehmer M, Kraume M, Moeller L, Görsch K, Würdemann H (2013) Floating layer formation, foaming, and microbial community structure change in full-scale biogas plant due to disruption of mixing and substrate overloading. Energy Sustain Soc 3:20CrossRefGoogle Scholar
  39. 39.
    Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) European experience with a novel energy crop. Biomass Bioenergy 19:209–277CrossRefGoogle Scholar
  40. 40.
    Wetter Kontor GmbH (2016). Monats- und Jahreswerte für Deutschland Accesed 04 July 2016

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Axel Schmidt
    • 1
  • Sébastien Lemaigre
    • 2
  • Thorsten Ruf
    • 1
  • Philippe Delfosse
    • 2
  • Christoph Emmerling
    • 1
  1. 1.Faculty of Regional and Environmental Sciences, Soil Science DepartmentUniversity of TrierTrierGermany
  2. 2.Environmental Research and Innovation Department (ERIN)Luxembourg Institute of Science and Technology (LIST)BelvauxLuxembourg

Personalised recommendations