Biomass Conversion and Biorefinery

, Volume 8, Issue 2, pp 471–483 | Cite as

Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review

  • Karthik RajendranEmail author
  • Edward Drielak
  • V. Sudarshan Varma
  • Shanmugaprakash Muthusamy
  • Gopalakrishnan Kumar
Review Article


Lignocellulosic biomass is the most abundant renewable energy bioresources available today. Due to its recalcitrant structure, lignocellulosic feedstocks cannot be directly converted into fermentable sugars. Thus, an additional step known as the pretreatment is needed for efficient enzyme hydrolysis for the release of sugars. Various pretreatment technologies have been developed and examined for different biomass feedstocks. One of the major concerns of pretreatments is the degradation of sugars and formation of inhibitors during pretreatment. The inhibitor formation affects in the following steps after pretreatments such as enzymatic hydrolysis and fermentation for the release of different bioenergy products. The sugar degradation and formation of inhibitors depend on the types and conditions of pretreatment and types of biomass. This review covers the structure of lignocellulose, followed by the factors affecting pretreatment and challenges of pretreatment. This review further discusses diverse types of pretreatment technologies and different applications of pretreatment for producing biogas, biohydrogen, ethanol, and butanol.


Lignocellulosic biomass Pretreatment Biogas Ethanol Butanol Inhibitors 


  1. 1.
    Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  2. 2.
    Zhang Y-HP, Ding S-Y, Mielenz JR, Cui J-B, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223CrossRefGoogle Scholar
  3. 3.
    Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815CrossRefGoogle Scholar
  4. 4.
    Gall DL, Ralph J, Donohue TJ, Noguera DR (2017) Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Curr Opin Biotechnol 45:120–126CrossRefGoogle Scholar
  5. 5.
    Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining 6, 465–482.Google Scholar
  6. 6.
    Himmel ME, (ed) (2009) Biomass recalcitrance, BlackwellGoogle Scholar
  7. 7.
    Taherzadeh MJ, Jeihanipour A (2012) Recalcitrance of lignocellulosic biomass to anaerobic digestion. Biogas production: pretreatment methods in anaerobic digestion, 27–54Google Scholar
  8. 8.
    Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211Google Scholar
  9. 9.
    Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRefGoogle Scholar
  10. 10.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRefGoogle Scholar
  11. 11.
    Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRefGoogle Scholar
  12. 12.
    Zabed H, Sahu J, Suely A, Boyce A, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501Google Scholar
  13. 13.
    Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties—a review. Carbohydr Polym 115:785–803CrossRefGoogle Scholar
  14. 14.
    Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry 2:48–53CrossRefGoogle Scholar
  15. 15.
    Burton RA, Fincher GB (2014) Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 26:79–84CrossRefGoogle Scholar
  16. 16.
    Ding SY, Himmel ME (2009) Anatomy and ultrastructure of maize cell walls: an example of energy plants. Biomass Recalcitrance:38–60Google Scholar
  17. 17.
    Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158CrossRefGoogle Scholar
  18. 18.
    Aslanzadeh S, Rajendran K, Taherzadeh MJ (2013) Pretreatment of lignocelluloses for biogas and ethanol processes. 125–150Google Scholar
  19. 19.
    Rajendran K, Taherzadeh MJ (2014) Pretreatment of lignocellulosic materials. Bioprocessing of Renewable Resources to Commodity Bioproducts, 43–75Google Scholar
  20. 20.
    Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199CrossRefGoogle Scholar
  21. 21.
    Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203CrossRefGoogle Scholar
  22. 22.
    Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci, Part A: Polym Chem 42:487–495CrossRefGoogle Scholar
  23. 23.
    Kontturi EJ (2005) Surface chemistry of cellulose: from natural fibres to model surfaces. Technische Universiteit, EindhovenGoogle Scholar
  24. 24.
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  25. 25.
    Gross AS, Chu J-W (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341CrossRefGoogle Scholar
  26. 26.
    Hanley SJ, Revol J-F, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4:209–220CrossRefGoogle Scholar
  27. 27.
    Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2:65CrossRefGoogle Scholar
  28. 28.
    Yoo C, Pan X (2016) Pretreatment of Lignocellulosic Feedstocks. In: Li Y, Khanal SK (eds) Bioenergy: principles and applications. Wiley-Blackwell, HobokenGoogle Scholar
  29. 29.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  30. 30.
    Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6:3547–3568Google Scholar
  31. 31.
    Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar
  32. 32.
    Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93CrossRefGoogle Scholar
  33. 33.
    Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738Google Scholar
  34. 34.
    Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550CrossRefGoogle Scholar
  35. 35.
    Chundawat SP, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231CrossRefGoogle Scholar
  36. 36.
    Zeng M, Mosier NS, Huang CP, Sherman DM, Ladisch MR (2007) Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol Bioeng 97:265–278CrossRefGoogle Scholar
  37. 37.
    Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209CrossRefGoogle Scholar
  38. 38.
    Kim J, Park C, Kim T-H, Lee M, Kim S, Kim S-W, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275CrossRefGoogle Scholar
  39. 39.
    Choi CH, Oh KK (2012) Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw. Bioresour Technol 110:349–354CrossRefGoogle Scholar
  40. 40.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  41. 41.
    Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In Biofuels. Springer Berlin, Heidelberg, pp 41–65Google Scholar
  42. 42.
    Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Biorefin 6:561–579CrossRefGoogle Scholar
  43. 43.
    Kumakura M, Kaetsu I (1983) Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis. Biomass 3:199–208CrossRefGoogle Scholar
  44. 44.
    Kumakura M, Kaetsu I (1984) Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose. Agricultural wastes 9:279–287CrossRefGoogle Scholar
  45. 45.
    Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. Biofuels: Methods and Protocols, 61–77Google Scholar
  46. 46.
    Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for biofuels 4:27CrossRefGoogle Scholar
  47. 47.
    Lavarack B, Griffin G, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380CrossRefGoogle Scholar
  48. 48.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  49. 49.
    Sierra R, Granda CB, Holtzapple MT (2009) Lime pretreatment. Methods in Molecular Biology: Biofuels 581:115–124CrossRefGoogle Scholar
  50. 50.
    Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, (ed C. E. Wyman), John Wiley & Sons, Ltd, Chichester, UK, 201–222.Google Scholar
  51. 51.
    Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456CrossRefGoogle Scholar
  52. 52.
    Contreras QH, Nagieb Z, Sanjuán DR (1997) Delignification of bagasse with acetic acid and ozone. Part 1. Acetic acid pulping. Polym-Plast Technol Eng 36:297–307CrossRefGoogle Scholar
  53. 53.
    Vila C, Santos V, Parajó JC (2000) Optimization of beech wood pulping in catalyzed acetic acid media. Can J Chem Eng 78:964–973CrossRefGoogle Scholar
  54. 54.
    Lam HQ, Le Bigot Y, Delmas M, Avignon G (2001) A new procedure for the destructuring of vegetable matter at atmospheric pressure by a catalyst/solvent system of formic acid/acetic acid. Applied to the pulping of triticale straw. Ind Crop Prod 14:139–144CrossRefGoogle Scholar
  55. 55.
    Sun XF, Sun R, Tomkinson J, Baird M (2004) Degradation of wheat straw lignin and hemicellulosic polymers by a totally chlorine-free method. Polym Degrad Stab 83:47–57CrossRefGoogle Scholar
  56. 56.
    Pan X, Sano Y (2005) Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol 96:1256–1263CrossRefGoogle Scholar
  57. 57.
    Saad M, Oliveira L, Cândido R, Quintana G, Rocha G, Gonçalves A (2008) Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzym Microb Technol 43:220–225CrossRefGoogle Scholar
  58. 58.
    Abad S, Santos V, Parajó J (2000) Formic acid-peroxyformic acid pulping of aspen wood: an optimization study. Holzforschung 54:544–552CrossRefGoogle Scholar
  59. 59.
    Lam HQ, Le Bigot Y, Delmas M (2001) Formic acid pulping of rice straw. Ind Crop Prod 14:65–71CrossRefGoogle Scholar
  60. 60.
    Jahan MS (2006) Formic acid pulping of bagasse. Bangladesh Journal of Scientific and Industrial Research 41:245–250Google Scholar
  61. 61.
    Ligero P, Villaverde J, Vega A, Bao M (2008) Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage. Bioresour Technol 99:5687–5693CrossRefGoogle Scholar
  62. 62.
    Sindhu R, Binod P, Satyanagalakshmi K, Janu KU, Sajna KV, Kurien N, Sukumaran RK, Pandey A (2010) Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Appl Biochem Biotechnol 162:2313–2323CrossRefGoogle Scholar
  63. 63.
    Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34:525–532CrossRefGoogle Scholar
  64. 64.
    Wang K, Bauer S, R-c S (2011) Structural transformation of Miscanthus× giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. J Agric Food Chem 60:144–152CrossRefGoogle Scholar
  65. 65.
    Gong G, Liu D, Huang Y (2010) Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst Eng 107:67–73CrossRefGoogle Scholar
  66. 66.
    Qin L, Liu Z-H, Li B-Z, Dale BE, Yuan Y-J (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326CrossRefGoogle Scholar
  67. 67.
    Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRefGoogle Scholar
  68. 68.
    Huijgen WJJ, Smit AT, Reith JH, Hd U (2011) Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. J Chem Technol Biotechnol 86:1428–1438CrossRefGoogle Scholar
  69. 69.
    Janesko BG (2011) Modeling interactions between lignocellulose and ionic liquids using DFT-D. PCCP 13:11393–11401CrossRefGoogle Scholar
  70. 70.
    Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108:2865–2875CrossRefGoogle Scholar
  71. 71.
    Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280CrossRefGoogle Scholar
  72. 72.
    Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506CrossRefGoogle Scholar
  73. 73.
    Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025CrossRefGoogle Scholar
  74. 74.
    Isroi RM, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259Google Scholar
  75. 75.
    Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRefGoogle Scholar
  76. 76.
    Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24:151–159CrossRefGoogle Scholar
  77. 77.
    Danon B, Van der Aa L, De Jong W (2013) Furfural degradation in a dilute acidic and saline solution in the presence of glucose. Carbohydr Res 375:145–152CrossRefGoogle Scholar
  78. 78.
    Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16CrossRefGoogle Scholar
  79. 79.
    Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98:9151–9172CrossRefGoogle Scholar
  80. 80.
    Sompong O, Boe K, Angelidaki I (2012) Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl Energy 93:648–654CrossRefGoogle Scholar
  81. 81.
    Sárvári Horváth I, Tabatabaei M, Karimi K, Kumar R (2016) Recent updates on biogas production-a review. Biofuel Research Journal 3:394–402CrossRefGoogle Scholar
  82. 82.
    Panagiotopoulos IA, Karaoglanoglou LS, Koullas DP, Bakker RR, Claassen PA, Koukios EG (2015) Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod 102:521–528CrossRefGoogle Scholar
  83. 83.
    Kumar G, Bakonyi P, Periyasamy S, Kim S, Nemestóthy N, Bélafi-Bakó K (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737CrossRefGoogle Scholar
  84. 84.
    De Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for biofuels 2:12CrossRefGoogle Scholar
  85. 85.
    Cao G, Ren N, Wang A, Lee D-J, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 34:7182–7188CrossRefGoogle Scholar
  86. 86.
    Ren N-Q, Cao G-L, Guo W-Q, Wang A-J, Zhu Y-H, Liu B-f XJ-F (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 35:2708–2712CrossRefGoogle Scholar
  87. 87.
    C-z L, Cheng X-y (2010) Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrog Energy 35:8945–8952CrossRefGoogle Scholar
  88. 88.
    Datar R, Huang J, Maness P-C, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32:932–939CrossRefGoogle Scholar
  89. 89.
    Pan C, Zhang S, Fan Y, Hou H (2010) Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrog Energy 35:2663–2669CrossRefGoogle Scholar
  90. 90.
    Wang Y, Wang H, Feng X, Wang X, Huang J (2010) Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge. Int J Hydrog Energy 35:3092–3099CrossRefGoogle Scholar
  91. 91.
    Ma S, Wang H, Wang Y, Bu H, Bai J (2011) Bio-hydrogen production from cornstalk wastes by orthogonal design method. Renew Energy 36:709–713CrossRefGoogle Scholar
  92. 92.
    Pan C-M, Ma H-C, Fan Y-T, Hou H-W (2011) Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation. Int J Hydrog Energy 36:4852–4862CrossRefGoogle Scholar
  93. 93.
    Zhang M-L, Fan Y-T, Xing Y, Pan C-M, Zhang G-S, Lay J-J (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254CrossRefGoogle Scholar
  94. 94.
    Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35CrossRefGoogle Scholar
  95. 95.
    Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofuel Research Journal 3:347–356CrossRefGoogle Scholar
  96. 96.
    Brethauer S, Studer MH (2014) Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci 7:1446–1453CrossRefGoogle Scholar
  97. 97.
    Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78CrossRefGoogle Scholar
  98. 98.
    Kabir MM, Rajendran K, Taherzadeh MJ, Horváth IS (2015) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour Technol 178:201–208CrossRefGoogle Scholar
  99. 99.
    Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRefGoogle Scholar
  100. 100.
    Qureshi N, Bowman M, Saha B, Hector R, Berhow M, Cotta M (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90:533–540CrossRefGoogle Scholar
  101. 101.
    Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227CrossRefGoogle Scholar
  102. 102.
    Gao K, Rehmann L (2014) ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy 66:110–115CrossRefGoogle Scholar
  103. 103.
    Kumar M, Goyal Y, Sarkar A, Gayen K (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energy 93:193–204CrossRefGoogle Scholar
  104. 104.
    Karimi K, Tabatabaei M, Sárvári Horváth I, Kumar R (2015) Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Research Journal 2:301–308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biological and Ecological EngineeringOregon State UniversityCorvallisUSA
  2. 2.MaREI Research Centre, Environmental Research InstituteUniversity College CorkCorkIreland
  3. 3.Department of Molecular Biosciences and BioengineeringUniversity of Hawai’i at MānoaHonoluluUSA
  4. 4.Agricultural Research Organization, Institute of Soil, Water and Environmental SciencesNewe Ya’ar Research CenterNewe YaarIsrael
  5. 5.Downstream Processing Laboratory, Department of BiotechnologyKumaraguru College of TechnologyCoimbatoreIndia
  6. 6.Center for Materials Cycles and Waste Management ResearchNational Institute for Environmental StudiesTsukubaJapan

Personalised recommendations