Advertisement

Biomass Conversion and Biorefinery

, Volume 7, Issue 3, pp 289–304 | Cite as

Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides

  • Héctor Hernando
  • Inés Moreno
  • Javier Fermoso
  • Cristina Ochoa-Hernández
  • Patricia Pizarro
  • Juan M. Coronado
  • Jiří ČejkaEmail author
  • David P. SerranoEmail author
Original Article

Abstract

Hierarchical ZSM-5 and Beta zeolites, loaded with MgO and ZnO, have been explored for the catalytic fast-pyrolysis of eucalyptus woodchips. These materials exhibit a high dispersion of the MgO or ZnO phases, which is probably due to the presence of a hierarchical porosity with both micro- and mesopores in the zeolitic supports. The incorporation of these metal oxides led to a significant reduction in the textural properties and to changes in the acidic properties of the parent zeolites. Thus, a decrease in the concentration of Brønsted acid sites was observed, which was accompanied by the generation of additional Lewis acid sites with medium strength. In addition, the incorporation of metal oxide promotes the formation of significant amount of basic sites, especially for the samples loaded with MgO. Catalytic fast pyrolysis experiments of eucalyptus woodchips were performed in a fixed bed reactor at 500 °C and atmospheric pressure under a nitrogen flow. In comparison with non-catalytic fast pyrolysis, the use of zeolitic catalysts caused a decrease in the bio-oil* (water free basis bio-oil) production due to enhanced formation of gases, as well as coke deposition on the catalyst. However, the quality of the bio-oil* was enhanced since the catalysts were able to decrease its oxygen content. In this way, h-ZSM-5-based catalysts showed a clearly deeper deoxygenation degree compared to those having h-Beta as support, with very low content of anhydro sugars and the formation of a significant amount of aromatics. Regarding the effect of the metal oxide phase, MgO-loaded samples provided bio-oil* with enhanced energy yields and lower oxygen content, probably due to the adequate balance of Lewis acid and basic sites. Likewise, significant differences were observed among the catalysts regarding the deoxygenation pathways and the compounds families present in the bio-oil*.

Keywords

Catalytic fast pyrolysis Hierarchical zeolite Bio-oil upgrading 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the European Union Seventh Framework Programme (FP7/2007-2013), under grant agreement no. 604307, and from the Spanish Ministry of Economy and Competitiveness (CATPLASBIO project, Ref: CTQ2014-602209-R). JC acknowledges the Czech Science Foundation for the support of the project P106/12/G015.

References

  1. 1.
    Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406. doi: 10.1039/c3gc41631c CrossRefGoogle Scholar
  2. 2.
    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513. doi: 10.1039/c004654j CrossRefGoogle Scholar
  3. 3.
    Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal B Environ 127:281–290. doi: 10.1016/j.apcatb.2012.08.030 CrossRefGoogle Scholar
  4. 4.
    Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6:514–538. doi: 10.3390/en6010514 CrossRefGoogle Scholar
  5. 5.
    Mihalcik DJ, Mullen CA, Boateng A (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis 92:224–232. doi: 10.1016/j.jaap.2011.06.001 CrossRefGoogle Scholar
  6. 6.
    Imran A, Bramer EA, Seshan K, Brem G (2014) High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Process Technol 127:72–79. doi: 10.1016/j.fuproc.2014.06.011 CrossRefGoogle Scholar
  7. 7.
    Zhang H, Xiao R, Jin B, Xiao G, Chen R (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262. doi: 10.1016/j.biortech.2013.04.094 CrossRefGoogle Scholar
  8. 8.
    Asadieraghi M, Daud WMAW (2015) In-situ catalytic upgrading of biomass pyrolysis vapor: using a cascade system of various catalysts in a multi-zone fixed bed reactor. Energy Convers Manag 101:151–163. doi: 10.1016/j.enconman.2015.05.008 CrossRefGoogle Scholar
  9. 9.
    Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87:2493–2501. doi: 10.1016/j.fuel.2008.02.015 CrossRefGoogle Scholar
  10. 10.
    Tan S, Zhang Z, Sun J, Wang Q (2013) Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese J Catal 34:641–650. doi: 10.1016/S1872-2067(12)60531-2 CrossRefGoogle Scholar
  11. 11.
    Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623. doi: 10.1039/c3cs60414d CrossRefGoogle Scholar
  12. 12.
    Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A Gen 470:115–122. doi: 10.1016/j.apcata.2013.10.040 CrossRefGoogle Scholar
  13. 13.
    Naqvi SR, Uemura Y, Yusup S, Sugiura Y, Nishiyama N (2015) In situ catalytic fast pyrolysis of paddy husk pyrolysis vapors over MCM-22 and ITQ-2 zeolites. J Anal Appl Pyrolysis 114:32–39. doi: 10.1016/j.jaap.2015.04.003 CrossRefGoogle Scholar
  14. 14.
    Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A Gen 423–424:154–161. doi: 10.1016/j.apcata.2012.02.030 CrossRefGoogle Scholar
  15. 15.
    Park HJ, Heo HS, Jeon JK, Kim J, Ryoo R, Jeong KE, Park YK (2010) Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Appl Catal B Environ 95:365–373. doi: 10.1016/j.apcatb.2010.01.015 CrossRefGoogle Scholar
  16. 16.
    Park HJ, Park KH, Jeon JK, Kim J, Ryoo R, Jeong KE, Park SH, Park YK (2012) Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel 97:379–384. doi: 10.1016/j.fuel.2012.01.075 CrossRefGoogle Scholar
  17. 17.
    Lin Y, Zhang C, Zhang M, Zhang J (2010) Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy and Fuels 24:5686–5695. doi: 10.1021/ef1009605 CrossRefGoogle Scholar
  18. 18.
    Putun E (2010) Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy 35:2761–2766. doi: 10.1016/j.energy.2010.02.024 CrossRefGoogle Scholar
  19. 19.
    Zhou L, Yang H, Wu H, Wang M, Cheng D (2013) Catalytic pyrolysis of rice husk by mixing with zinc oxide: characterization of bio-oil and its rheological behavior. Fuel Process Technol 106:385–391. doi: 10.1016/ j.fuproc.2012.09.003 CrossRefGoogle Scholar
  20. 20.
    Fanchiang WL, Lin YC (2002) Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts. Appl Catal A Gen 419–420:102–110. doi: 10.1016/j.apcata.2012.01.017 Google Scholar
  21. 21.
    Channiwala SA, Parikh, PP (2002) A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels. Fuel, 2002, 81, 1051-1063. doi:  10.1016/S0016-2361(01)00131-4
  22. 22.
    Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral Á (2006) Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds. Chem. Mater. 18:2462–2464. doi:  10.1021/cm060080r
  23. 23.
    Aguado J, Serrano DP, Rodríguez JM (2008) Zeolite Beta with hierarchical porosity prepared from organofunctionalized seeds. Microporous Mesoporous Mater 115:504–513. doi:  10.1016/j.micromeso.2008.02.026
  24. 24.
    Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354. doi:  10.1006/jcat.1993.1145
  25. 25.
    Serrano DP, García RA, Vicente G, Linares M, Procházková D, Čejka J (2011) Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J Catal 279:366–380. doi:  10.1016/j.jcat.2011.02.007
  26. 26.
    Fermoso J, Hernando H, Jana P, Moreno I, Přech J, Ochoa-Hernández C, Pizarro P, Coronado JM, Čejka J, Serrano DP (2016) Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catal Today 15:171–181. doi:  10.1016/j.cattod.2015.12.009
  27. 27.
    Lermer H, Draeger M, Steffen J, Unger KK (1985) Synthesis and structure refinement of ZSM-5 single crystals. Zeolites 5:131–134. doi: 10.1016/0144-2449(85)90019-3 CrossRefGoogle Scholar
  28. 28.
    Omegna A, Vasic M, Van Bokhoven JA, Pirngruber G, Prins R (2004) Dealumination and realumination of microcrystalline zeolite Beta: an XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study. Phys Chem Chem Phys 6:447–452. doi: 10.1039/b311925d CrossRefGoogle Scholar
  29. 29.
    García-Muñoz RA, Serrano DP, Vicente G, Linares M, Vitvarova D, Čejka J (2015) Remarkable catalytic properties of hierarchical zeolite-beta in epoxide rearrangement reactions. Catal Today 243:141–152. doi: 10.1016/j.cattod.2014.09.014 CrossRefGoogle Scholar
  30. 30.
    Poupin C, Maache R, Pirault-Roy L, Brahmi R, Williams CT (2014) Effect of Al2O3/MgO molar ratio on catalytic performance of Pt/MgO-Al2O3 catalyst in acetonitrile hydrogenation followed by Fourier transform infrared spectroscopy. Appl Catal A Gen 475:363–370. doi: 10.1016/j.apcata.2014.01.041 CrossRefGoogle Scholar
  31. 31.
    Travert A, Vimont A, Sahibed-Dine A, Daturi M, Lavalley JC (2006) Use of pyridine CH(D) vibrations for the study of Lewis acidity of metal oxides. Appl Catal A Gen 307:98–107. doi: 10.1016/j.apcata.2006.03.011 CrossRefGoogle Scholar
  32. 32.
    Barbosa LAMM, Van Santen RA (1999) Theoretical study of the enhanced Brønsted acidity of Zn2+-exchanged zeolites. Catal Letters 63:97–106. doi: 10.1023/A:1019004702119 CrossRefGoogle Scholar
  33. 33.
    Escola JM, Aguado J, Serrano DP, Briones L, Díaz de Tuesta JL, Calvo R, Fernandez E (2012) Conversion of polyethylene into transportation fuels by the combination of thermal cracking and catalytic hydroreforming over Ni-supported hierarchical beta zeolite. Energy Fuel 26:3187–3195. doi: 10.1021/ef300938r CrossRefGoogle Scholar
  34. 34.
    Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268. doi: 10.1016/j.jcat.2011.01.019 CrossRefGoogle Scholar
  35. 35.
    Cheng S, Wei L, Zhao X, Julson J (2016) Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading. Catalysts 195:6–24. doi: 10.3390/catal6120195 Google Scholar
  36. 36.
    Xie J, Zhuang W, Zhang W, Yan N, Zhou Y, Wang J (2017) Construction of acid–base synergetic sites on mg-bearing BEA zeolites triggers the unexpected low-temperature alkylation of phenol. Chem Cat Chem 9(6):1076–1083. doi: 10.1002/cctc.201601127 Google Scholar
  37. 37.
    Stefanidis SD, Karakoulia SA, Kalogiannis KG, Iliopoulou EF, Delimitis A, Yiannoulakisc H, Zampetakisc T, Lappas AA, Triantafyllidis KS (2016) Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl Catal B Environ 196:155–173. doi: 10.1016/j.apcatb.2016.05.031 CrossRefGoogle Scholar
  38. 38.
    Nguyen TS, Zabeti M, Lefferts L, Brem G, Seshan K (2013) Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy 48:100–110. doi: 10.1016/j.biombioe.2012.10.024 CrossRefGoogle Scholar
  39. 39.
    Hernando H, Jiménez-Sánchez S, Fermoso J, Pizarro P, Coronado JM, Serrano DP (2016) Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catal Sci Technol 6:2829–2843. doi: 10.1039/C6CY00522E CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Héctor Hernando
    • 1
  • Inés Moreno
    • 1
    • 2
  • Javier Fermoso
    • 1
  • Cristina Ochoa-Hernández
    • 3
  • Patricia Pizarro
    • 1
    • 2
  • Juan M. Coronado
    • 1
  • Jiří Čejka
    • 3
    Email author
  • David P. Serrano
    • 1
    • 2
    Email author
  1. 1.Thermochemical Processes UnitIMDEA Energy InstituteMostolesSpain
  2. 2.Chemical and Environmental Engineering Group, ESCETRey Juan Carlos UniversityMostolesSpain
  3. 3.J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations