Skip to main content
Log in

Catalytic gasification of digestate sludge in supercritical water on the pilot plant scale

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Gasification in supercritical water can be assisted with heterogeneous catalysts. Effective salt separation upstream of the catalyst is important to avoid poisoning of the catalyst and to recover nutrients. Recovery of phosphorus and nitrogen as well as gasification of a significant portion of the organic carbon were demonstrated on the pilot plant scale. A Ru/C catalyst was applied to catalyze the formation of CH4, which was the desired primary gasification product. On top of the catalyst, a bed of ZnO was used as sulfur adsorbent to protect the catalyst from deactivation. As feedstock for the process, glycerol, ethanol, and digestate sludge were studied. The results confirm the activity of the catalyst under the applied conditions. At a reaction temperature of 420 °C and a pressure of 280 bar, a gas composition close to thermodynamic equilibrium was achieved. Salt separation performed at 470 °C was effective, but the separation efficiency was less for potassium than for phosphorus. Fifty-six percent of the ash contained in digestate sludge was separated and recovered. Sulfur partly escaped the salt separation system and reached the reactor. The ZnO layer trapped most of this remaining sulfur. The remaining sulfur contamination was low enough not to poison the Ru/C catalyst completely. In total, 326 kg of glycerol, 334 kg of digestate sludge, and 167 kg of ethanol were gasified without any operational issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860

    Article  Google Scholar 

  2. Zirkler D, Peters A, Kaupenjohann M (2014) Elemental composition of biogas residues: variability and alteration during anaerobic digestion. Biomass Bioenergy 67:89–98

    Article  Google Scholar 

  3. Statistisches Bundesamt (2013) Abfallstatistik in Fachserie 19 Reihe 1, Abfallentsorgung 2013, Juli 2015

  4. Makádi M, Tomócsik A, Orosz V (2012) Digestate: a new nutrient source—review. Energy 4(7.5):8–7

    Google Scholar 

  5. Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Sciences 12(3):242–257

    Article  Google Scholar 

  6. Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133

    Article  Google Scholar 

  7. Patzelt DJ, Hindersin S, Elsayed S, Boukis N, Kerner M, Hanelt D (2015) Microalgal growth and fatty acid productivity on recovered nutrients from hydrothermal gasification of Acutodesmus obliquus. Algal Res 10:164–171

    Article  Google Scholar 

  8. D’ Jesus P, Boukis N, Kraushaar-Czarnetzki B, Dinjus E (2006) Influence of process variables on gasification of corn silage in supercritical water. Ind Eng Chem Res 45:1622–1630

    Article  Google Scholar 

  9. D’ Jesus P, Boukis N, Kraushaar-Czarnetzki B, Dinjus E (2006) Gasification of corn and glover grass in supercritical water. Fuel 85:1032–1038

    Article  Google Scholar 

  10. D’ Jesus P, Artiel C, Boukis N, Kraushaar-Czarnetzki B, Dinjus E (2005) Influence of educt preparation on gasification of corn silage in supercritical water. Ind Eng Chem Res 44:9071–9077

    Article  Google Scholar 

  11. Yoshida T, Oshima Y, Matsumura Y (2004) Gasification of biomass model compounds and real biomass in supercritical water. Biomass Bioenergy 26(1):71–78

    Article  Google Scholar 

  12. Osada M, Sato O, Watanabe M, Arai K, Shirai M (2006) Water density effect on lignin gasification over supported noble metal catalysts in supercritical water. Energy Fuel 20(3):930–935

    Article  Google Scholar 

  13. Boukis N, Galla U (2005) Vorrichtung und Verfahren zur Abscheidung von anorganischen Feststoffen aus einer wässrigen Lösung Patent. Deutsches Patent- und Markenamt 10 2005 037 469, 20.08.2007

  14. Boukis N, Galla U, Müller H, Dinjus E (2009) Behaviour of inorganic salts during hydrothermal gasification of biomass. 17th EUBCE. From research to industry and markets, 29 June- 3 July 2009, CCH Hamburg, Germany

  15. Reimer J, Peng G, Viereck S, De Boni E, Breinl J, Vogel F (2016) A novel salt separator for the supercritical water gasification of biomass. J Supercrit Fluids 117:113–121

    Article  Google Scholar 

  16. Osada M, Sato T, Watanabe M, Adschiri T, Arai K (2004) Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuel 18(2):327–333

    Article  Google Scholar 

  17. Elliott DC, Neuenschwander GG, Phelps MR, Hart TR, Zacher AH, Silva LJ (1999) Chemical processing in high-pressure aqueous environments. 6. Demonstration of catalytic gasification for chemical manufacturing wastewater cleanup in industrial plants. Ind Eng Chem Res 38(3):879–883

    Article  Google Scholar 

  18. Elliott DC, Neuenschwander GG, Hart TR, Butner RS, Zacher AH, Engelhard MH, Young JS, McCready DE (2004) Chemical processing in high-pressure aqueous environments. 7. Process development for catalytic gasification of wet biomass feedstocks. Ind Eng Chem Res 43(9):1999–2004

    Article  Google Scholar 

  19. Elliott DC, Hart TR, Neuenschwander GG (2006) Chemical processing in high-pressure aqueous environments. 8. Improved catalysts for hydrothermal gasification. Ind Eng Chem Res 45(11):3776–3781

    Article  Google Scholar 

  20. Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH (2012) Chemical processing in high-pressure aqueous environments. 9. Process development for catalytic gasification of algae feedstocks. Ind Eng Chem Res 51(33):10768–10777

    Article  Google Scholar 

  21. Elliott DC (2008) Catalytic hydrothermal gasification of biomass. Biofuels Bioprod Biorefin 2(3):254–265

    Article  MathSciNet  Google Scholar 

  22. Matsumura Y, Minowa T, Potic B, Kersten SR, Prins W, van Swaaij WP, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29(4):269–292

    Article  Google Scholar 

  23. Möbius A, Boukis N, Sauer J (2013) Gasification of biomass in supercritical water (SCWG). In: Méndez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments, 2013th edn. Formatex, Budapest, pp 264–268

    Google Scholar 

  24. Schubert M, Regler JW, Vogel F (2010) Continuous salt precipitation and separation from supercritical water. Part 1: type 1 salts. J Supercritical Fluids 52(1):99–112

    Article  Google Scholar 

  25. Schubert M, Müller JB, Vogel F (2014) Continuous hydrothermal gasification of glycerol mixtures: autothermal operation, simultaneous salt recovery, and the effect of K3PO4 on the catalytic gasification. Ind Eng Chem Res 53(20):8404–8415

    Article  Google Scholar 

  26. Vogel F, Waldner M, Truong T-B, De Boni E, Stucki S, inventors (2005) Paul Scherrer Institut, assignee. Verfahren zur Erzeugung von Methan und Methanhydrat aus Biomasse (Process for the production of methane and methane hydrate from biomass), Patent PCT 05021601.9/EP 0502210

  27. Zöhrer H, Vogel F (2013) Hydrothermal catalytic gasification of fermentation residues from a biogas plant. Biomass Bioenergy 53:138–148

    Article  Google Scholar 

  28. Zöhrer H, Mayr F, Vogel F (2013) Stability and performance of ruthenium catalysts based on refractory oxide supports in supercritical water conditions. Energy Fuel 27:4739–4747

    Article  Google Scholar 

  29. Zöhrer H, De Boni E, Vogel F (2014) Hydrothermal processing of fermentation residues in a continuous multistage rig—operational challenges for liquefaction, salt separation and catalytic gasification. Biomass Bioenergy 65:51–63

    Article  Google Scholar 

  30. Boukis N, Herbig S, Hauer E, Sauer J, Vogel F (2016) Catalytic gasification of digestate sludge in supercritical water, experimental results on the pilot plant scale. 24th EUBCE, 6–9 June 2016, Amsterdam, NL

  31. Boukis N, Diem V, Galla U, Dinjus E (2006) Methanol reforming in supercritical water for hydrogen production. Combust Sci and Tech 178:467–485

    Article  Google Scholar 

  32. Möbius A, Boukis N, Galla U, Dinjus E (2012) Gasification of pyroligneous acid in supercritical water. Fuel 94:395–400

    Article  Google Scholar 

  33. Galla U, Boukis N, Anlage zur Behandlung von fließfähigen Stoffen in überkritischem Wasser Gebrauchsmuster. Deutsches Patent- und Markenamt 202 20 307.7, 30.04.2003

  34. Boukis N, Galla U, Müller H, Dinjus E (2008) Hydrothermal gasification of glycerol on the pilot plant scale. 16th EUBCE, 2–6 June 2008, Valencia, Spain, proceedings 1898–1901

  35. Kruse A, Meier E, Rimbrecht P, Schacht M (2000) Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res 39:4842–4848

    Article  Google Scholar 

  36. Akgül G, Kruse A (2012) Influence of salts on the subcritical water-gas shift reaction. J Supercrit Fluids 66:207–214

    Article  Google Scholar 

  37. Minowa T, Zhen F, Ogi T (1998) Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids 13(1):253–259

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the BMBF (Förderkennzeichen 03SF0350F), the Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., the Bundesamt für Energie (Switzerland), the Swiss Competence Center in Energy Research (SCCER BIOSWEET), and the Kommission für Technologie und Innovation (Switzerland) for financing the hardware, the whole infrastructure, and the main part of the R&D program.

Dr. M. Lemann, Hydromethan AG, and Mr. B. Stucki, and H. J. Fiechter, KASAG Langnau AG (Switzerland), designed, engineered, and manufactured the salt separator used in this study.

Dr. H. Zöhrer performed the lab-scale experiments—not reported here—which were the basis for the up-scaling to the catalytic process presented here.

Mr. U. Galla and Mr. H. Lam, IKFT, KIT, performed the engineering of the modification of the hardware of the VERENA plant, necessary for the catalytic process. They were supported by Mr. E. De Boni, PSI.

Mr. S. Henecka, K. Weiss, R. Drexler, Ch. Liebgott, M. Pagel, S. Johnsen, and Ms. D. Deutsch performed the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Boukis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukis, N., Hauer, E., Herbig, S. et al. Catalytic gasification of digestate sludge in supercritical water on the pilot plant scale. Biomass Conv. Bioref. 7, 415–424 (2017). https://doi.org/10.1007/s13399-017-0238-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0238-x

Keywords

Navigation