Skip to main content
Log in

Hydrocarbon chemicals from hydrothermal processing of renewable oils over HZSM-5

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

We used the hydrothermal catalytic reaction (400 ℃, 200 bar, 180 min) of renewable triglyceride feedstocks over zeolite HZSM-5 to produce hydrocarbons. Crude algal oil, cold-pressed coconut oil, peanut oil, and lard were converted into aromatics, alkanes, and fuel gases in varying yields and proportions. The most abundant liquid products from coconut oil, peanut oil, and lard were xylenes and toluene, whereas 2-methyl-pentane was the most abundant for crude algal oil. Reactions with crude algal oil generated alkanes and aromatics in comparable amount with more gases than liquid products. Peanut oil and lard, the more refined triglyceride feedstocks, gave the highest total liquid product yields of nearly 90 wt.% and yields of aromatic hydrocarbons (around 50 wt %) that exceeded those from individual fatty acids under the same reaction condition. Taken collectively, these results demonstrate the technical feasibility of biorenewable aromatic chemical production from zeolite catalytic hydrothermal processing of triglyceride feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. DooHo C (2013) The Institute of Energy Economics Japan (IEEJ) 2035(January):1. http://eneken.ieej.or.jp/data/4681.pdf

  2. Bruijnincx PCA, Weckhuysen BM (2013). Angew Chem Int Ed 52(46):11980. doi:10.1002/anie.201305058

  3. Zhao X, Wei L, Julson J, Qiao Q, Dubey A, Anderson G (2015). New Biotechnol 32(2):300. doi:10.1016/j.nbt.2015.01.004

  4. Zhao X, Wei L, Cheng S, Julson J, Anderson G, Muthukumarappan K, Qiu C (2016). J Renewable Sustainable Energy 8(1):013109. doi:10.1063/1.4941911

  5. Bayat A, Sadrameli SM (2015). RSC Adv 5(36):28360. doi:10.1039/C5RA01691F

  6. Kadrmas C, Khambete M, Kubátová A, Kozliak E, Seames W (2015). Processes 3(2):222. doi:10.3390/pr3020222. http://www.mdpi.com/2227-9717/3/2/222/

  7. Fegade S, Tande B, Kubátová A, Seames W, Kozliak E (2015). Ind Eng Chem Res 54(39):9657. doi:10.1021/acs.iecr.5b01932

  8. Hilten R, Speir R, Kastner J, Das KC (2011). Bioresour Technol 102(17):8288. doi:10.1016/j.biortech.2011.06.049

  9. Benson TJ, Hernandez R, White MG, French WT, Alley EE, Holmes WE, Thompson B (2008). Clean—Soil, Air, Water 36(8):652. doi:10.1002/clen.200800050

  10. Bielansky P, Weinert A, Schönberger C, Reichhold A (2011) Biomass conversion and biorefinery 2(1):53. doi:10.1007/s13399-011-0027-x

  11. Revellame ED, Holmes WE, Benson TJ, Forks AL, French WT, Hernandez R (2012). Top Catal 55 (3-4):185. doi:10.1007/s11244-012-9787-1

  12. Ooi YS, Zakaria R, Mohamed AR, Bhatia S (2004). Biomass Bioenergy 27(5):477. doi:10.1016/j.biombioe.2004.03.003

  13. Brown TM, Duan P, Savage PE (2010). Energy Fuels 24(6):3639. doi:10.1021/ef100203u

  14. Alenezi R, Leeke GA, Santos RCD, Khan AR (2009). Chem Eng Res Des 87(6):867. doi:10.1016/j.cherd.2008.12.009

  15. Satyarthi JK, Srinivas D, Ratnasamy P (2011). Appl Catal, A 391(1-2):427. doi:10.1016/j.apcata.2010.03.047

  16. Wang WC, Thapaliya N, Campos A, Stikeleather LF, Roberts WL (2012). Fuel 95:622. doi:10.1016/j.fuel.2011.12.041. http://linkinghub.elsevier.com/retrieve/pii/S0016236111008106

  17. Mo N, Savage P (2013). http://pubs.acs.org/doi/abs/10.1021/sc400368n

  18. Mo N, Tandar W, Savage PE (2015). J Supercrit Fluids 102:73. doi:10.1016/j.supflu.2015.03.018. http://linkinghub.elsevier.com/retrieve/pii/S089684461500131X

  19. Lu Y, Savage PE (2015). J Supercrit Fluids 99:88. doi:10.1016/j.supflu.2015.01.019. http://linkinghub.elsevier.com/retrieve/pii/S0896844615000431

  20. Augusto CCC, Zotin JL, Faro ADC (2001). Catal Lett 75(1-2):37. doi:10.1023/A:1016636302112

  21. Gallo PD, Pham-huu C, York APE, Ledoux MJ (1996). Ind Eng Chem Res 5885(96):3302

  22. Benson TJ, Hernandez R, French WT, Alley EG, Holmes WE (2009). J Mol Catal A: Chem 303(1-2):117. doi:10.1016/j.molcata.2009.01.008

  23. Danuthai T, Jongpatiwut S, Rirksomboon T, Osuwan S, Resasco DE (2009). Appl Catal, A 361(1-2):99. doi:10.1016/j.apcata.2009.04.001

  24. Kissin YV (2001). Catal Rev Sci Eng 4940(January):85. doi:10.1081/CR-100104387

  25. Benson T, Hernandez R, French T, Alley E, Holmes W (2007). J Mol Catal A: Chem 274(1-2):173. doi:10.1016/j.molcata.2007.05.003

  26. Haag WO, Lago RM, Weisz PB (1981). Faraday Discuss Chem Soc 72:317. doi:10.1039/dc9817200317. http://pubs.rsc.org/en/Content/ArticleLanding/1981/DC/DC9817200317

  27. Tsai T (1999). Appl Catal, A 181(2):355. doi:10.1016/S0926-860X(98)00396-2. http://www.sciencedirect.com/science/article/pii/S0926860X98003962

Download references

Acknowledgments

The authors thank Wincent Tandar for assistance with the experiments. The authors also thank David Hietala and Catherine Griffith for their help with FAME analysis. The authors gratefully acknowledge the financial support from the National Science Foundation (CBET-1133439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip E. Savage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, N., Pennebacker, J. & Savage, P.E. Hydrocarbon chemicals from hydrothermal processing of renewable oils over HZSM-5. Biomass Conv. Bioref. 7, 437–443 (2017). https://doi.org/10.1007/s13399-016-0231-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-016-0231-9

Keywords

Navigation