CO2 gasification behavior of biomass chars in an entrained flow reactor

Abstract

Chars of different particle sizes (150–250, 500–600 μm) from two different biomass species (spruce and coconut shell) were gasified under entrained flow condition in the presence of CO2 at different temperatures (800, 900 and 1000 °C). The concentration of CO2 was also varied between 5 and 20 % to determine its effect. It was found that significant improvement in gasification efficiency is possible by lowering the particle size below 0.5 mm. This finding was attributed to the spruce char as it showed the highest (≈50 %) conversion for the lowest particle size. It was also revealed that less reactive chars (coconut shell) were insensitive to the particle size and temperature variation for CO2 as a gasifying agent. Generally, pyrolysis process dominates the conversion process during raw biomass gasification. No tar component was observed during gasification at 1000 °C. As a whole, this study provides useful insight about the entrained flow gasification process of biomass chars with CO2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Bell DA, Towler BF, Maohong F (2011) Coal gasification and its applications. doi:10.1016/B978-0-8155-2049-8.10015-4

  2. 2.

    Zhou J, Chen Q, Zhao H, Cao X, Mei Q, Luo Z, Cen K (2009) Biomass-oxygen gasification in a high-temperature entrained-flow gasifier. Biotechnol Adv 27:606–611. doi:10.1016/j.biotechadv.2009.04.011

    Article  Google Scholar 

  3. 3.

    Zhang Y, Kajitani S, Ashizawa M, Oki Y (2010) Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace. Fuel 89:302–309. doi:10.1016/j.fuel.2009.08.045

    Article  Google Scholar 

  4. 4.

    Zhao Y, Sun S, Zhou H, Sun R, Tian H, Luan J, Qian J (2010) Experimental study on sawdust air gasification in an entrained-flow reactor. Fuel Process Technol 91:910–914. doi:10.1016/j.fuproc.2010.01.012

    Article  Google Scholar 

  5. 5.

    Zhao Y, Sun S, Tian H, Qian J, Su F, Ling F (2009) Characteristics of rice husk gasification in an entrained flow reactor. Bioresour Technol 100:6040–6044. doi:10.1016/j.biortech.2009.06.030

    Article  Google Scholar 

  6. 6.

    Hernández JJ, Aranda G, Barba J, Mendoza JM (2012) Effect of steam content in the air–steam flow on biomass entrained flow gasification. Fuel Process Technol 99:43–55. doi:10.1016/j.fuproc.2012.01.030

    Article  Google Scholar 

  7. 7.

    Hernández JJ, Aranda-Almansa G, Serrano C (2010) Co-gasification of biomass wastes and coal–coke blends in an entrained flow gasifier: an experimental study. Energy Fuel 24:2479–2488. doi:10.1021/ef901585f

    Article  Google Scholar 

  8. 8.

    Lapuerta M, Hernández JJ, Pazo A, López J (2008) Gasification and co-gasification of biomass wastes: effect of the biomass origin and the gasifier operating conditions. Fuel Process Technol 89:828–837. doi:10.1016/j.fuproc.2008.02.001

    Article  Google Scholar 

  9. 9.

    Qin K, Jensen PA, Lin W, Jensen AD (2012) Biomass gasification behavior in an entrained flow reactor: gas product distribution and soot formation. Energy Fuel 26:5992–6002

    Article  Google Scholar 

  10. 10.

    Qin K, Lin W, Jensen PA, Wu H, Jensen AD (2013) Characterization of residual particulates from biomass entrained flow gasification. Energy Fuel 27:262–270

    Article  Google Scholar 

  11. 11.

    Qin K, Lin W, Jensen PA, Jensen AD (2012) High-temperature entrained flow gasification of biomass. Fuel 93:589–600. doi:10.1016/j.fuel.2011.10.063

    Article  Google Scholar 

  12. 12.

    Hernández JJ, Aranda-Almansa G, Bula A (2010) Gasification of biomass wastes in an entrained flow gasifier: effect of the particle size and the residence time. Fuel Process Technol 91:681–692. doi:10.1016/j.fuproc.2010.01.018

    Article  Google Scholar 

  13. 13.

    Kajitani S, Suzuki N, Ashizawa M, Hara S (2006) CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel 85:163–169. doi:10.1016/j.fuel.2005.07.024

    Article  Google Scholar 

  14. 14.

    Kajitani S, Hara S, Matsuda H (2002) Gasification rate analysis of coal char with a pressurized drop tube furnace. Fuel 81:539–546

    Article  Google Scholar 

  15. 15.

    Tanner J, Kabir KB, Müller M, Bhattacharya S (2015) Low temperature entrained flow pyrolysis and gasification of a Victorian brown coal. Fuel 154:107–113. doi:10.1016/j.fuel.2015.03.069

    Article  Google Scholar 

  16. 16.

    Yang K, Peng J, Srinivasakannan C, Zhang L, Xia H, Duan X (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour Technol 101:6163–6169. doi:10.1016/j.biortech.2010.03.001

    Article  Google Scholar 

  17. 17.

    Mahajan OP (1991) CO2 surface area of coals: the 25-year paradox. Carbon N Y 29:735–742

    Article  Google Scholar 

  18. 18.

    Chen L, Bhattacharya S (2013) Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions. Environ Sci Technol 47:1729–1734

    Google Scholar 

  19. 19.

    Kirtania K, Bhattacharya S (2015) CO2 gasification kinetics of algal and woody char procured under different pyrolysis conditions and heating rates. ACS Sustain Chem Eng 3:365–373. doi:10.1021/sc500777u

    Article  Google Scholar 

  20. 20.

    Kobayashi H, Howard JBB, Sarofim AFF (1977) Coal devolatilization at high temperatures. Symp Combust 16:411–425. doi:10.1016/S0082-0784(77)80341-X

    Article  Google Scholar 

  21. 21.

    Umeki K, Kirtania K, Chen L, Bhattacharya S (2012) Fuel particle conversion of pulverized biomass during pyrolysis in an entrained flow reactor. Ind Eng Chem Res 51:13973–13979. doi:10.1021/ie301530j

    Article  Google Scholar 

  22. 22.

    Kirtania K, Tanner J, Kabir KB, Rajendran S, Bhattacharya S (2014) In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass. Bioresour Technol 151:36–42. doi:10.1016/j.biortech.2013.10.034

    Article  Google Scholar 

  23. 23.

    Cetin E, Moghtaderi B, Gupta R, Wall TF (2004) Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83:2139–2150. doi:10.1016/j.fuel.2004.05.008

    Article  Google Scholar 

  24. 24.

    Hurt RH, Sarofim AF, Longwell JP (1991) The role of microporous surface area in the gasification of chars from a sub-bituminous coal. Fuel 70:1079–1082. doi:10.1016/0016-2361(91)90263-A

    Article  Google Scholar 

  25. 25.

    Seo DK, Lee SK, Kang MW, Hwang J, Yu T-U (2010) Gasification reactivity of biomass chars with CO2. Biomass Bioenergy 34:1946–1953. doi:10.1016/j.biombioe.2010.08.008

    Article  Google Scholar 

  26. 26.

    Di Blasi C (2009) Combustion and gasification rates of lignocellulosic chars. Prog Energy Combust Sci 35:121–140. doi:10.1016/j.pecs.2008.08.001

    Article  Google Scholar 

  27. 27.

    Van der Drift A, Boerrigter H, Coda B, Cieplik MK, Hemmes K (2004) Entrained flow gasification of biomass—ash behaviour, feeding issues, and system analyses. ECN Biomass, Report No. ECN-C--04-039, pp 21–23

  28. 28.

    Kirtania K, Joshua J, Kassim MA, Bhattacharya S (2014) Comparison of CO2 and steam gasification reactivity of algal and woody biomass chars. Fuel Process Technol 117:44–52

    Article  Google Scholar 

Download references

Acknowledgments

The research work was carried out at the Department of Chemical Engineering, Monash University. The authors like to acknowledge the financial and technical support for this work from Australian Research Council (ARC) LIEF Grant (LE120100141) and Monash Center for Electron Microscopy (MCEM) respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kawnish Kirtania.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supporting information for this work contains scanning electron microscopic images of spruce and coconut shell char. The information is available via the internet at (DOCX 828 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirtania, K., Bhattacharya, S. CO2 gasification behavior of biomass chars in an entrained flow reactor. Biomass Conv. Bioref. 6, 49–59 (2016). https://doi.org/10.1007/s13399-015-0174-6

Download citation

Keywords

  • Biomass
  • Char
  • Gasification
  • Entrained flow