Biomass Conversion and Biorefinery

, Volume 4, Issue 2, pp 157–191 | Cite as

Pathways of lignocellulosic biomass conversion to renewable fuels

  • Sonil Nanda
  • Javeed Mohammad
  • Sivamohan N. Reddy
  • Janusz A. Kozinski
  • Ajay K. DalaiEmail author
Review Article


The increased worldwide demand for energy, particularly from petroleum-derived fuels has led to the search for a long-term solution of a reliable source of clean energy. Lignocellulosic biomasses appear to hold the key for a continuous supply of renewable fuels without compromising with the increasing energy needs. However, the major possible solutions to the current energy crisis include ethanol, bio-oils and synthesis gas (syngas) produced from lignocellulosic biomass. Recently, a great deal of research has been made in the fields of biomass conversion through biochemical, hydrothermal or thermochemical pathways to biofuels. However, a broad-spectrum assessment of the above pathways is rare in literature in terms of technology used, biofuel yields, potential challenges and possible outcomes. This review paper discusses different routes for biofuel production, particularly ethanol, bio-oil and syngas with the bio-oil upgrading techniques. This review highlights ethanol fermentation and available biomass pretreatment as the biochemical mode, not limiting to the pros and cons of the pretreatments. Supercritical water gasification (hydrothermal pathway) of biomass for syngas production followed by gas-to-liquid technologies (syngas fermentation and Fischer–Tropsch catalysis) has been discussed. In addition, thermochemical pathway dealing with biomass gasification for syngas and pyrolysis for bio-oils has been presented with compositional analysis of bio-oils and their upgrading technologies. The review focuses on various engineering limitations encountered during biomass conversion and bioprocessing with the potential solutions which do not restrict them to different biofuel production pathways.


Lignocellulosic biomass Bioethanol Bio-oil Fermentation Gasification Pyrolysis 



Ammonia fibre explosion


Carbon nanotubes


Combined heat and power


Continuous stirred tank reactor


Dimethyl ether




Flexible fuel vehicle




Greenhouse gas




Liquid hourly space velocity




Performance Index


Polymerase chain reaction


Separate hydrolysis and fermentation


Simultaneous saccharification and fermentation


Supercritical CO2


Supercritical water


Supercritical water gasification


Water–gas shift



Average molecular weight


Critical pressure


Critical temperature


Heat of reaction


Ionic product of water


Molecular weight


Polydispersity Index


Weight percent



The authors express their acknowledgments towards the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chair (CRC) program and BioFuelNet Canada for the financial support in this research.


  1. 1.
    Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage 52:858–875. doi: 10.1016/j.enconman.2010.08.013 Google Scholar
  2. 2.
    International Energy Agency (IEA) (2012) CO2 emissions from fuel combustion highlights. 2012 ed. LuxembourgGoogle Scholar
  3. 3.
    International Energy Outlook (IEO) (2011) U.S. Energy Information Administration, Washington, DC. Accessed 1 March 2011
  4. 4.
    U.S. Energy Information Administration (USEIA) (2013) U.S. Department of Energy, Washington. Accessed 14 April 2013
  5. 5.
    Demain AL (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332. doi: 10.1007/s10295-008-0521-8 Google Scholar
  6. 6.
    Fang X, Shen Y, Zhao J, Bao X, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101:4814–4819. doi: 10.1016/j.biortech.2009.11.050 Google Scholar
  7. 7.
    Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna JV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833. doi: 10.1016/j.biortech.2009.11.049 Google Scholar
  8. 8.
    Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotech Adv 27:185–194. doi: 10.1016/j.biotechadv.2008.11.001 Google Scholar
  9. 9.
    Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375. doi: 10.1016/j.biombioe.2003.08.002 Google Scholar
  10. 10.
    Mabee WE, Saddler JN (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101:4806–4813. doi: 10.1016/j.biortech.2009.10.098 Google Scholar
  11. 11.
    Foust TD, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16:547–565. doi: 10.1007/s10570-009-9317-x Google Scholar
  12. 12.
    Trostle R (2011) Global agricultural supply and demand: factors contributing to the recent increase in food commodity prices. USDA, a report from the economic research service; 2008. Accessed 23 April 2011
  13. 13.
    Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568. doi: 10.1111/j.1365-313X.2008.03463.x Google Scholar
  14. 14.
    Nanda S, Azargohar R, Kozinski JA, Dalai AK (2013) Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks. Bioenerg Res. doi: 10.1007/s12155-013-9359-7 Google Scholar
  15. 15.
    Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res 6:663–677. doi: 10.1007/s12155-012-9281-4 Google Scholar
  16. 16.
    Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822. doi: 10.1016/0016-2361(95)80013-8 Google Scholar
  17. 17.
    Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energ 35:1624–1631. doi: 10.1016/j.renene.2009.08.033 Google Scholar
  18. 18.
    Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848. doi: 10.1016/j.procbio.2003.09.011 Google Scholar
  19. 19.
    Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Res Conserv Recycl 50:1–39. doi: 10.1016/j.resconrec.2006.05.007 Google Scholar
  20. 20.
    Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47. doi: 10.1016/S0960-8524(03)00097-X Google Scholar
  21. 21.
    Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114. doi: 10.1023/A:1020858910646 Google Scholar
  22. 22.
    Qian Y, Zuo C, Tan J, He J (2007) Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass. Energy 32:196–202. doi: 10.1016/ Google Scholar
  23. 23.
    Sjostrom E (1993) Wood chemistry fundamentals and applications, 2nd edn. Academic Press, San DiegoGoogle Scholar
  24. 24.
    Demirbas MF (2006) Current technologies for biomass conversion into chemicals and fuels. Energ Source Part A 28:1181–1188. doi: 10.1080/00908310500434556 Google Scholar
  25. 25.
    Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a conversion of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energ 31:219–224. doi: 10.1002/ep.11613 Google Scholar
  26. 26.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi: 10.1021/ie801542g Google Scholar
  27. 27.
    Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35. doi: 10.1016/j.biombioe.2012.04.020 Google Scholar
  28. 28.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. doi: 10.1016/S0960-8524(01)00212-7 Google Scholar
  29. 29.
    Youssef BM, Aziz NH (1999) Influence of gamma-irradiation on the bioconversion of rice straw by Trichoderma viride into single cell protein. Cytobios 97:171–183Google Scholar
  30. 30.
    Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290. doi: 10.1016/j.biortech.2008.09.010 Google Scholar
  31. 31.
    Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17:79–83. doi: 10.1016/S1369-703X(03)00141-4 Google Scholar
  32. 32.
    Zhu S, Wu Y, Yu Z, Wang C, Yu F, Jin S, Ding Y, Chi R, Liao J, Zhang Y (2006) Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosyst Eng 93:279–283. doi: 10.1016/j.biosystemseng.2005.11.013 Google Scholar
  33. 33.
    Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33. doi: 10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2 Google Scholar
  34. 34.
    Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch R (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi: 10.1016/j.biortech.2004.06.025 Google Scholar
  35. 35.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. doi: 10.1016/j.biortech.2005.01.010 Google Scholar
  36. 36.
    Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. doi: 10.1007/s00253-009-1883-1 Google Scholar
  37. 37.
    Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. doi: 10.1016/j.biortech.2010.01.088 Google Scholar
  38. 38.
    Tomas-Pejo E, Olive JM, Ballesteros M (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67:874–884Google Scholar
  39. 39.
    McMillan JD (1994) Pretreatment of lignocelluloses biomass. In: Himmel ME, Baker JO, Overend RP (eds) Conversion of hemicellulose hydrolyzates to ethanol. Am Chem Soc Symp, Washington, pp 292–324Google Scholar
  40. 40.
    Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. doi: 10.3390/ijms9091621 Google Scholar
  41. 41.
    Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33. doi: 10.1016/0960-8524(95)00122-0 Google Scholar
  42. 42.
    Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861. doi: 10.1002/bit.20905 Google Scholar
  43. 43.
    Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. doi: 10.1016/j.biortech.2009.10.066 Google Scholar
  44. 44.
    Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376. doi: 10.1002/bit.22179 Google Scholar
  45. 45.
    Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202. doi: 10.1007/s001070050039 Google Scholar
  46. 46.
    Biermann CJ, Schultz TP, McGinnis GD (1984) Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. J Wood Chem Technol 4:111–128. doi: 10.1080/02773818408062286 Google Scholar
  47. 47.
    Saska M, Ozer E (1995) Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Biotechnol Bioeng 45:517–523. doi: 10.1002/bit.260450609 Google Scholar
  48. 48.
    Ehara K, Saka S (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. J Wood Sci 51:148–153. doi: 10.1007/s10086-004-0626-2 Google Scholar
  49. 49.
    Peterson AA, Vogel F, Lachance RP, Forling M, Antal J, Micheal WT (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65. doi: 10.1039/B810100K Google Scholar
  50. 50.
    Kumar S (2013) Sub- and supercritical water technology for biofuels. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 147–183Google Scholar
  51. 51.
    Pasquini D, Pimenta MTB, Ferreira LH, da Silva Curvelo AA (2005) Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol-water mixtures and carbon dioxide at high pressures. J Supercrit Fluid 36:31–39. doi: 10.1016/j.supflu.2005.03.004 Google Scholar
  52. 52.
    Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403. doi: 10.1016/j.cej.2009.10.061 Google Scholar
  53. 53.
    Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg 33:88–96. doi: 10.1016/j.biombioe.2008.04.016 Google Scholar
  54. 54.
    Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066. doi: 10.1007/s12155-012-9208-0 Google Scholar
  55. 55.
    Wyman CE, Hinman ND (1990) Ethanol: fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol 24–25:735–753Google Scholar
  56. 56.
    Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266. doi: 10.1007/s00253-003-1444-y Google Scholar
  57. 57.
    Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146. doi: 10.1016/j.cbpa.2006.02.035 Google Scholar
  58. 58.
    Boominathan K, Reddy CA (1992) cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. PNAS 89:5586–5590Google Scholar
  59. 59.
    Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 24:421–433. doi: 10.1080/03601238909372658 Google Scholar
  60. 60.
    Couto SR, Sanroman MA (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76:291–302. doi: 10.1016/j.jfoodeng.2005.05.022 Google Scholar
  61. 61.
    Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179. doi: 10.1016/S1369-703X(02)00129-8 Google Scholar
  62. 62.
    Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzym Microb Tech 18:312–331. doi: 10.1016/0141-0229(95)00157-3 Google Scholar
  63. 63.
    Fukuda H, Kondo A, Tamalampudi S (2009) Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem Eng J 44:2–12. doi: 10.1016/j.bej.2008.11.016 Google Scholar
  64. 64.
    Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzym Microb Tech 43:115–119. doi: 10.1016/j.enzmictec.2008.03.001 Google Scholar
  65. 65.
    Hahn-Hagerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzym Microb Tech 16:933–943. doi: 10.1016/0141-0229(94)90002-7 Google Scholar
  66. 66.
    Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143. doi: 10.1007/s00253-006-0402-x Google Scholar
  67. 67.
    Bisaria VS (1991) Bioprocessing of agro-residue to glucose and chemicals. In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, London, pp 187–223Google Scholar
  68. 68.
    Jarboea LR, Shanmugama KT, Ingram LO (2007) Ethanol. In: Majumder-Russell D (ed) Encyclopedia of microbiology. Elsevier, New YorkGoogle Scholar
  69. 69.
    Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1: an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164. doi: 10.1016/j.jbiotec.2005.07.003 Google Scholar
  70. 70.
    Gutierrez T, Buszko ML, Ingram LO, Preston JF (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol 98–100:327–340. doi: 10.1385/ABAB:98-100:1-9:327 Google Scholar
  71. 71.
    Georgieva TI, Skiadas IV, Ahring BK (2007) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98:1161–1170. doi: 10.1002/bit.21536 Google Scholar
  72. 72.
    Cook GM, Morgan HW (1994) Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfuricum) increases ethanol production in pH-controlled batch culture. Appl Microbiol Biotechnol 41:84–89. doi: 10.1007/BF00166086 Google Scholar
  73. 73.
    Baskaran S, Ahn HJ, Lynd LR (1995) Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog 11:276–281. doi: 10.1021/bp00033a006 Google Scholar
  74. 74.
    Lamed R, Zeikus JG (1980) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141:1251–1257Google Scholar
  75. 75.
    Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119Google Scholar
  76. 76.
    Avci A, Donmez S (2006) Effect of zinc on ethanol production by two Thermoanaerobacter strains. Process Biochem 41:984–989. doi: 10.1016/j.procbio.2005.11.007 Google Scholar
  77. 77.
    Houghton TP, Thompson DN, Hess JR, Lacey JA, Wolcot MP, Schirp A, Englund K, Dostal D, Loge F (2004) Fungal upgrading of wheat straw for straw-thermoplastics production. Appl Biochem Biotechnol 113:71–93Google Scholar
  78. 78.
    Biely P, Kremnicky L (1998) Yeasts and their enzyme systems degrading cellulose, hemicelluloses and pectin. Food Technol Biotechnol 36:305–312Google Scholar
  79. 79.
    Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Penttila M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225Google Scholar
  80. 80.
    Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev 14:334–343. doi: 10.1016/j.rser.2009.08.012 Google Scholar
  81. 81.
    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi: 10.1021/cr068360d Google Scholar
  82. 82.
    Kruse A (2008) Review: supercritical water gasification. Biofuels Bioprod Bioref 2:415–437. doi: 10.1002/bbb.93 Google Scholar
  83. 83.
    Fang Z, Sato T, Smith RL Jr, Inomata H, Arai K, Kozinski JA (2008) Reaction chemistry and phase behaviour of lignin in high-temperature supercritical water. Bioresour Technol 99:3424–3430. doi: 10.1016/j.biortech.2007.08.008 Google Scholar
  84. 84.
    Susanti RF, Dianningrum LW, Yum T, Kim Y, Lee BG, Kim J (2012) High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int J Hydrogen Energ 37:11677–11690. doi: 10.1016/j.ijhydene.2012.05.087 Google Scholar
  85. 85.
    Fang Z, Minowa T, Fang C, Smith RL Jr, Inomata H, Kozinski JA (2008) Catalytic hydrothermal gasification of cellulose and glucose. Int J Hydrogen Energ 33:981–990. doi: 10.1016/j.ijhydene.2007.11.023 Google Scholar
  86. 86.
    Azadi P, Farnood R (2011) Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. Int J Hydrogen Energ 36:9529–9541. doi: 10.1016/j.ijhydene.2011.05.081 Google Scholar
  87. 87.
    Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73. doi: 10.1016/S1364-0321(99)00007-6 Google Scholar
  88. 88.
    Maschio G, Koufopanos C, Lucchesi A (1992) Pyrolysis, a promising route for biomass utilization. Bioresour Technol 42:219–231. doi: 10.1016/0960-8524(92)90025-S Google Scholar
  89. 89.
    Zheng CY, Tao HX, Xie XA (2013) Distribution and characterizations of liquefaction of celluloses in sub- and super-critical ethanol. Bioresources 8:648–662Google Scholar
  90. 90.
    Portofino S, Donatelli A, Iovane P, Innella C, Civita R, Martino M, Matera DA, Russo A, Cornacchia G, Galvagno S (2013) Steam gasification of waste tyre: influence of process temperature on yield and product composition. Waste Manage 33:672–678. doi: 10.1016/j.wasman.2012.05.041 Google Scholar
  91. 91.
    Resende FLP, Fraley SA, Berger MJ, Savage PE (2008) Noncatalytic gasification of lignin in supercritical water. Energ Fuel 22:1328–1324. doi: 10.1021/ef700574k Google Scholar
  92. 92.
    Elliott DC (2008) Review: catalytic hydrothermal gasification of biomass. Biofuels, Bioprod Bioref 2:254–265. doi: 10.1002/bbb.74 Google Scholar
  93. 93.
    Bermejo MD, Cocero MJ (2006) Supercritical water oxidation: a technical review. AIChE J 52:3933–3951. doi: 10.1002/aic.10993 Google Scholar
  94. 94.
    Zhang L, Xu C, Champagne P (2012) Activity and stability of a novel Ru modified Ni catalyst for hydrogen generation by supercritical water gasification of glucose. Fuel 96:541–545. doi: 10.1016/j.fuel.2012.01.066 Google Scholar
  95. 95.
    Lu Y, Li S, Guo L, Zhang X (2010) Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts. Int J Hydrogen Energ 35:7161–7168. doi: 10.1016/j.ijhydene.2009.12.047 Google Scholar
  96. 96.
    Azadi P, Afif E, Azadi F, Farnood R (2012) Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chem 14:1766–1777. doi: 10.1039/C2GC16378K Google Scholar
  97. 97.
    Azadi P, Khan S, Strobel F, Azadi F, Farnood R (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B Environ 117–118:330–338. doi: 10.1016/j.apcatb.2012.01.035 Google Scholar
  98. 98.
    Osada M, Sato M, Arai K, Shirai M (2006) Stability of supported ruthenium catalysts for lignin gasification in supercritical water. Energ Fuel 20:2337–2343. doi: 10.1021/ef060356h Google Scholar
  99. 99.
    Yamaguchi A, Hiyoshi N, Sato O, Osada M, Shirai M (2008) Lignin gasification over supported ruthenium trivalent salts in supercritical water. Energ Fuel 22:1485–1492. doi: 10.1021/ef8001263 Google Scholar
  100. 100.
    Furusawa T, Sato T, Sugito H, Miura Y, Ishiyama Y, Sato M, Itoh N, Suzuki N (2007) Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int J Hydrogen Energ 32:699–704. doi: 10.1016/j.ijhydene.2006.08.001 Google Scholar
  101. 101.
    Madenoglu TG, Boukis N, Saglam M, Yuksel M (2011) Supercritical water gasification of real biomass feedstocks in continuous flow system. Int J Hydrogen Energ 36:14408–14415. doi: 10.1016/j.ijhydene.2011.08.047 Google Scholar
  102. 102.
    Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098. doi: 10.1039/C2CS35188A Google Scholar
  103. 103.
    Onwudili JA, Williams PT (2013) Hydrogen and methane selectivity during alkaline supercritical water gasification of biomass with ruthenium-alumina catalyst. Appl Catal B Environ 132–133:70–79. doi: 10.1016/j.apcatb.2012.11.033 Google Scholar
  104. 104.
    Lu Y, Zhao L, Guo L (2011) Technical and economic evaluation of solar hydrogen production by supercritical water gasification of biomass in China. Int J Hydrogen Energ 36:14349–14359. doi: 10.1016/j.ijhydene.2011.07.138 Google Scholar
  105. 105.
    Nzihou A, Flamant G, Stanmore B (2012) Synthetic fuels from biomass using concentrated solar energy: a review. Energy 42:121–131. doi: 10.1016/ Google Scholar
  106. 106.
    Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev 15:4255–4273. doi: 10.1016/j.rser.2011.07.124 Google Scholar
  107. 107.
    Heiskanen H, Virkajarvi I, Viikari L (2007) The effects of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme Microb Tech 41:362–367. doi: 10.1016/j.enzmictec.2007.03.004 Google Scholar
  108. 108.
    Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206. doi: 10.1016/j.copbio.2007.03.008 Google Scholar
  109. 109.
    Daniell J, Kopke M, Simpson SD (2012) Commercial biomass syngas fermentation. Energies 5:5372–5417. doi: 10.3390/en5125372 Google Scholar
  110. 110.
    Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchii gen. nov., sp. nov., a CO-oxidizing, ethanol producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489. doi: 10.1099/ijs.0.018507-0 Google Scholar
  111. 111.
    Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL (2012) Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchii. Bioresour Technol 104:336–341. doi: 10.1016/j.biortech.2011.10.054 Google Scholar
  112. 112.
    Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenerg 23:487–493. doi: 10.1016/S0961-9534(02)00071-5 Google Scholar
  113. 113.
    Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzym Microb Tech 44:281–288. doi: 10.1016/j.enzmictec.2008.11.002 Google Scholar
  114. 114.
    Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D (2010) Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour Technol 101:8784–8789. doi: 10.1016/j.biortech.2010.06.072 Google Scholar
  115. 115.
    Abubackar HN, Veiga MC, Kennes C (2012) Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresour Technol 114:518–522. doi: 10.1016/j.biortech.2012.03.027 Google Scholar
  116. 116.
    Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi: 10.1099/ijs.0.63482-0 Google Scholar
  117. 117.
    Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843. doi: 10.1002/jctb.3712 Google Scholar
  118. 118.
    Younesi H, Najafpour G, Mohamed AR (2006) Liquid fuel production from synthesis gas via fermentation process in a continuous tank bioreactor (CSTBR) using Clostridium ljungdahlii. Iran J Biotechnol 4:45–53Google Scholar
  119. 119.
    Saxena J, Tanner RS (2012) Optimization of a cornsteep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol 28:1553–1561. doi: 10.1007/s11274-011-0959-0 Google Scholar
  120. 120.
    Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei. Bioresour Technol 102:5794–5799. doi: 10.1016/j.biortech.2011.02.032 Google Scholar
  121. 121.
    Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng 109:492–498. doi: 10.1016/j.jbiosc.2009.10.022 Google Scholar
  122. 122.
    Ragsdale SW (2009) Nickel-based enzyme systems. J Biol Chem 284:18571–18575. doi: 10.1074/jbc.R900020200 Google Scholar
  123. 123.
    Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Bioref 5:93–114. doi: 10.1002/bbb.256 Google Scholar
  124. 124.
    Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022. doi: 10.1016/j.biortech.2009.12.098 Google Scholar
  125. 125.
    Kundiyana DK, Huhnke RL, Maddipati P, Atiyeh HK, Wilkins MR (2010) Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour Technol 101:9673–9680. doi: 10.1016/j.biortech.2010.07.054 Google Scholar
  126. 126.
    Klasson KT, Ackerson CMD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72:1673–1678. doi: 10.1016/0016-2361(93)90354-5 Google Scholar
  127. 127.
    Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844. doi: 10.1021/bp990108m Google Scholar
  128. 128.
    Munasinghe PC, Khanal SK (2012) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modelling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol 122:130–136. doi: 10.1016/j.biortech.2012.03.053 Google Scholar
  129. 129.
    Hickey R, Datta R, Tsai SP, Basu R (2011) Membrane supported bioreactor for conversion of syngas components to liquid products. U.S. Patent 2011/0256597 A1, 20 October 2011Google Scholar
  130. 130.
    Tsai SP, Datta R, Basu R, Yoon SH (2009) Syngas conversion system using asymmetric membrane and anaerobic microorganism. U.S. Patent 2009/0215163 A1, 29 August 2009Google Scholar
  131. 131.
    Xu D, Lewis RS (2012) Syngas fermentation to biofuels: effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenerg 45:303–310. doi: 10.1016/j.biombioe.2012.06.022 Google Scholar
  132. 132.
    Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenerg 35:2690–2696. doi: 10.1016/j.biombioe.2011.03.005 Google Scholar
  133. 133.
    Ahmed A, Cateni BG, Huhnke RL, Lewis SR (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenerg 30:665–672. doi: 10.1016/j.biombioe.2006.01.007 Google Scholar
  134. 134.
    Calli B, Mertoglu B, Inanc B, Yenigun O (2005) Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem 40:1285–1292. doi: 10.1016/j.procbio.2004.05.008 Google Scholar
  135. 135.
    Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38:513–521. doi: 10.1007/s10295-010-0794-6 Google Scholar
  136. 136.
    Panneerselvam A, Wilkins MR, Delorme MJM, Atiyeh HK, Huhnke RL (2009) Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”. Biol Eng 2:135–144Google Scholar
  137. 137.
    Dry ME (2004) Present and future applications of the Fischer–Tropsch process. Appl Catal A 276:1–3. doi: 10.1016/j.apcata.2004.08.014 Google Scholar
  138. 138.
    Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ Fuel 22:814–839. doi: 10.1021/ef700411x Google Scholar
  139. 139.
    Li F, Jiang D, Zeng XC, Chen Z (2012) Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale 4:1123–1129. doi: 10.1039/c1nr11121c Google Scholar
  140. 140.
    Choi Y, Liu P (2009) Mechanism of ethanol synthesis from syngas on Rh (111). J Am Chem Soc 131:13054–13061. doi: 10.1021/ja903013x Google Scholar
  141. 141.
    Spivey JJ, Egbebi A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36:1514–1528. doi: 10.1039/B414039G Google Scholar
  142. 142.
    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511. doi: 10.1038/nmat1916 Google Scholar
  143. 143.
    Fan Z, Chen W, Pan X, Bao X (2009) Catalytic conversion of syngas into C2-oxygenates over Rh-based catalysts—effects of carbon supports. Catal Today 147:86–93. doi: 10.1016/j.cattod.2009.03.004 Google Scholar
  144. 144.
    Haider MA, Gogate MR, Davis RJ (2009) Fe-promotion of supported Rh catalysts for different conversion of syngas to ethanol. J Catal 261:9–16. doi: 10.1016/j.jcat.2008.10.013 Google Scholar
  145. 145.
    Mei D, Rousseau R, Kathmann SM, Glezakou VA, Engelhard MH, Jiang W, Wang C, Gerber MA, White JF, Stevens DJ (2010) Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study. J Catal 271:325–342. doi: 10.1016/j.jcat.2010.02.020 Google Scholar
  146. 146.
    Han L, Mao D, Yu J, Guo Q, Lu G (2012) Synthesis of C2-oxygenates from syngas over Rh-based catalyst supported on SiO2, TiO2 and SiO2-TiO2 mixed mode. Catal Commun 23:20–24. doi: 10.1016/j.catcom.2012.02.032 Google Scholar
  147. 147.
    Chen G, Guo CY, Zhang X, Huang Z, Yuan G (2011) Direct conversion of syngas to ethanol over Rh/Mn supported on modified SBA-15 molecular sieves: effect of supports. Fuel Process Technol 92:456–461. doi: 10.1016/j.fuproc.2010.10.012 Google Scholar
  148. 148.
    Cosultchi A, Parez-Luna M, Morales-Serna JA, Salmon M (2012) Charaterization of modified Fischer–Tropsch catalysts promoted with alkaline metals for higher alcohol synthesis. Catal Lett 142:368–377Google Scholar
  149. 149.
    Surisetty VR, Dalai AK, Kozinski J (2010) Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs. Appl Catal A Gen 385:153–162. doi: 10.1016/j.apcata.2010.07.009 Google Scholar
  150. 150.
    Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X (2012) Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J Am Chem Soc 134:13922–13925. doi: 10.1021/ja3034153 Google Scholar
  151. 151.
    Yang G, San X, Jiang N, Tanaka Y, Li X, Jin Q, Tao K, Meng F, Tsubaki N (2011) A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with modified zeolite and Cu/ZnO catalysts. Catal Today 164:425–428. doi: 10.1016/j.cattod.2010.10.027 Google Scholar
  152. 152.
    Liu Y, Murata K, Inaba M, Takahara I (2013) Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation and methyl acetate hydrogenolysis. Fuel Process Technol 110:206–213. doi: 10.1016/j.fuproc.2012.12.016 Google Scholar
  153. 153.
    Sai Prasad PS, Bae JW, Kang SH, Lee YJ, Jun KW (2008) Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: the superiority of ferrierite over other zeolites. Fuel Process Technol 89:1281–1286. doi: 10.1016/j.fuproc.2008.07.014 Google Scholar
  154. 154.
    Erena J, Garona R, Arandes JM, Aguayo AT, Bilbao J (2005) Direct synthesis of dimethyl ether from (H2 + CO) and (H2 + CO2) feeds. Effect of feed composition. Int J Chem React Eng 3:1–15. doi: 10.2202/1542-6580.1295 Google Scholar
  155. 155.
    Aguayo AT, Erena J, Sierra I, Olazar M, Bilbao J (2005) Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. Catal Today 106:265–270. doi: 10.1016/j.cattod.2005.07.144 Google Scholar
  156. 156.
    Zeng C, Sun J, Yang G, Ooki I, Hayashi K, Yoneyama Y, Taguchi A, Abe T, Tsubaki N (2013) Highly selective and multifunctional Cu/ZnO/Zeolite catalyst for one-step dimethyl ether synthesis: preparing catalyst by bimetallic physical sputtering. Fuel 112:140–144. doi: 10.1016/j.fuel.2013.05.026 Google Scholar
  157. 157.
    Moradi GR, Nosrati S, Yaripor F (2007) Effects of hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas. Catal Commun 8:598–606. doi: 10.1016/j.catcom.2006.08.023 Google Scholar
  158. 158.
    Feng W, Yao J, Wu H, Ji P (2012) Synthesis of bioethanol from biomass-derived syngas over carbon nanotube/silica supported catalyst. Biotechnol Adv 30:874–878. doi: 10.1016/j.biotechadv.2012.01.017 Google Scholar
  159. 159.
    Surisetty VR, Dalai AK, Kozinski J (2010) Effect of Rh promoter on MWCNT-supported alkali modified MoS2 catalysts for higher alcohols synthesis from CO hydrogenation. Appl Catal A Gen 381:282–288. doi: 10.1016/j.apcata.2010.04.036 Google Scholar
  160. 160.
    Zhang X, Liu Y, Liu G, Tao K, Jin Q, Meng F, Wang D, Tsubaki N (2012) Product distributions including hydrocarbon and oxygenates of Fischer–Tropsch synthesis over mesoporous MnO2-supported Fe catalyst. Fuel 92:122–129. doi: 10.1016/j.fuel.2011.07.041 Google Scholar
  161. 161.
    Ma W, Kugler EL, Dadyburjor DB (2011) Promotional effect of copper on activity and selectivity to hydrocarbons and oxygenates for Fischer–Tropsch synthesis over potassium-promoted iron catalysts supported on activated carbon. Energ Fuel 25:1931–1938. doi: 10.1021/ef101720c Google Scholar
  162. 162.
    Subramanian ND, Gao J, Mo X, Goodwin JG Jr, Torres W, Spivey JJ (2010) La and/or V oxide promoted Rh/SiO2 catalysts: effect of temperature, H2/CO ratio, space velocity and pressure on ethanol selectivity from syngas. J Catal 272:204–209. doi: 10.1016/j.jcat.2010.03.019 Google Scholar
  163. 163.
    Chiang SW, Chang CC, Shie JL, Chang CY, Ji DR, Tseng JY, Chang CF, Chen YH (2012) Synthesis of alcohols and alkanes from CO and H2 over MoS2/γ-Al2O3 catalyst in a packed bed with continuous flow. Energies 5:4147–4164. doi: 10.3390/en5104147 Google Scholar
  164. 164.
    Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727. doi: 10.1039/C1CS15008A Google Scholar
  165. 165.
    Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205. doi: 10.1016/j.cattod.2009.07.075 Google Scholar
  166. 166.
    Takagawa M, Okamoto A, Fujimura H, Izawa Y, Arakawa H (1998) Ethanol synthesis from carbon dioxide and hydrogen. Stud Surf Sci Catal 114:525–528. doi: 10.1016/S0167-2991(98)80812-4 Google Scholar
  167. 167.
    Arakawa H (1998) Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2. Stud Surf Sci Catal 114:19–30. doi: 10.1016/S0167-2991(98)80723-4 Google Scholar
  168. 168.
    Kusama H, Okabe K, Sayama K, Arakawa H (1997) Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe-SiO2 catalysts. Catal Today 22:343–348. doi: 10.1016/S0360-5442(96)00095-3 Google Scholar
  169. 169.
    Inui T, Yamamoto T (1998) Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts. Catal Today 45:209–214. doi: 10.1016/S0920-5861(98)00217-X Google Scholar
  170. 170.
    Heijden HV, Ptasinski KJ (2012) Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis. Energy 46:200–210. doi: 10.1016/ Google Scholar
  171. 171.
    Wei L, Pordesimo LO, Igathinathane C, Batchelor WD (2009) Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass Bioenerg 33:255–266. doi: 10.1016/j.biombioe.2008.05.017 Google Scholar
  172. 172.
    Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrol. doi: 10.1016/j.jaap.2013.05.022 Google Scholar
  173. 173.
    Boucher ME, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenerg 19:337–350. doi: 10.1016/S0961-9534(00)00043-X Google Scholar
  174. 174.
    He R, Ye XP, English BC, Satrio JA (2009) Influence of pyrolysis condition on switchgrass bio-oil yield and physicochemical properties. Bioresour Technol 100:5305–5311. doi: 10.1016/j.biortech.2009.02.069 Google Scholar
  175. 175.
    Ba TA, Chaala M, Garcia-Perez D, Rodrigue RC (2004) Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energ Fuel 18:704–712. doi: 10.1021/ef030118b Google Scholar
  176. 176.
    Joshi J, Lawal A (2012) Hydrodeoxygenation of pyrolysis oil in a microreactor. Chem Eng Sci 74:1–8. doi: 10.1016/j.ces.2012.01.052 Google Scholar
  177. 177.
    Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Bioresour Technol 68:71–77. doi: 10.1016/S0960-8524(98)00086-8 Google Scholar
  178. 178.
    Ringer M, Putsche V, Scahill J (2013) Large-scale pyrolysis oil production: a technology assessment and economic analysis. NREL/TP-510-37779; 2006. Accessed 26 March 2013
  179. 179.
    E4tech (2009) Review of technologies for gasification of biomass and wastes. NNFCC Project 09/008Google Scholar
  180. 180.
    Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201. doi: 10.1002/anie.200604504 Google Scholar
  181. 181.
    Sharma RK, Bakhshi NN (1991) Catalytic upgrading of biomass-derived oils to transportation fuels and chemicals. Can J Chem Eng 69:1071–1081. doi: 10.1002/cjce.5450690505 Google Scholar
  182. 182.
    Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen 407:1–19. doi: 10.1016/j.apcata.2011.08.046 Google Scholar
  183. 183.
    Couper JR, Penney WR, Fair JR, Walas SM (2010) Chemical process equipment-selection and design, 2nd edn. Elsevier, USAGoogle Scholar
  184. 184.
    Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energ Fuel 18:590–598. doi: 10.1021/ef034067u Google Scholar
  185. 185.
    Agblevor FA, Besler S (1996) Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energ Fuel 10:293–298. doi: 10.1021/ef950202u Google Scholar
  186. 186.
    Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end users. Energ Fuel 13:914–921. doi: 10.1021/ef980272b Google Scholar
  187. 187.
    Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energ Fuel 11:1081–1091. doi: 10.1021/ef9700339 Google Scholar
  188. 188.
    Oasmaa A, Sipila K, Solantausta Y, Kuoppala E (2005) Quality improvement of pyrolysis liquids: effect of light volatiles on the stability of pyrolysis liquids. Energ Fuel 19:2556–2561. doi: 10.1021/ef0400924 Google Scholar
  189. 189.
    Rajvanshi AK (1986) Biomass gasification. In: Goswami DY (ed) Alternative energy in agriculture. CRC Press, New York, pp 83–102Google Scholar
  190. 190.
    Higman C, van der Burgt M (2008) Gasification. Elsevier, LondonGoogle Scholar
  191. 191.
    Roddy DJ, Whitton CM (2012) Comprehensive renewable energy. Biomass gasification and pyrolysis. Elsevier, New York, pp 133–137Google Scholar
  192. 192.
    Delgado J, Aznar MP, Corella J (1997) Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res 36:1535–1543. doi: 10.1021/ie960273w Google Scholar
  193. 193.
    Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour Technol 95:95–101. doi: 10.1016/j.biortech.2004.02.003 Google Scholar
  194. 194.
    Franco C, Pinto F, Gulyurtlu I, Cabrita I (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82:835–842. doi: 10.1016/S0016-2361(02)00313-7 Google Scholar
  195. 195.
    Moon J, Lee J, Lee U, Hwang J (2013) Transient behavior of devolatilization and char reaction during steam gasification of biomass. Bioresour Technol 133:429–436. doi: 10.1016/j.biortech.2013.01.148 Google Scholar
  196. 196.
    Weerachanchai P, Horio M, Tangsathitkulchai C (2009) Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresour Technol 100:1419–1427. doi: 10.1016/j.biortech.2008.08.002 Google Scholar
  197. 197.
    Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A (2003) Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Ind Eng Chem Res 42:3929–3936. doi: 10.1021/ie0300575 Google Scholar
  198. 198.
    Zhang L, Xu CC, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energ Convers Manag 51:969–982. doi: 10.1016/j.enconman.2009.11.038 Google Scholar
  199. 199.
    McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63. doi: 10.1016/S0960-8524(01)00120-1 Google Scholar
  200. 200.
    van der Drift A, Boerrigter H (2013) Synthesis gas from biomass for fuels and chemicals. ECN-C-06-001; 2006. Accessed 26 March 2013
  201. 201.
    Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N (2008) Direct liquefaction of biomass. Chem Eng Technol 31:667–677. doi: 10.1002/ceat.200800077 Google Scholar
  202. 202.
    Balat M (2008) Mechanisms of thermochemical biomass conversion processes. Part 3: reactions of liquefaction. Energ Source A 30:649–659. doi: 10.1080/10407780600817592 Google Scholar
  203. 203.
    Xu C, Etcheverry T (2008) Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel 87:335–345. doi: 10.1016/j.fuel.2007.05.013 Google Scholar
  204. 204.
    Blaschek HP, Ezeji TC, Scheffran J (2010) Biofuels from agricultural wastes and byproducts. Blackwell, New York. doi: 10.1002/9780813822716. ISBN 978-0-813-80252-7Google Scholar
  205. 205.
    Miller IJ, Fellows SK (1981) Liquefaction of biomass as a source of fuels or chemicals. Nature 289:398–399. doi: 10.1038/289398a0 Google Scholar
  206. 206.
    Zhong C, Wei X (2004) A comparative experimental study on the liquefaction of wood. Energy 29:1731–1741. doi: 10.1016/ Google Scholar
  207. 207.
    Mun SP, Hassan EM (2004) Liquefaction of lignocellulosic biomass with mixtures of ethanol and small amounts of phenol in the presence of methanesulfonic acid catalyst. J Ind Eng Chem 10:722–727Google Scholar
  208. 208.
    Xu J, Jiang J, Dai W, Xu Y (2012) Liquefaction of sawdust in hot compressed ethanol for the production of bio-oils. Process Saf Environ 90:333–338. doi: 10.1016/j.psep.2012.01.001 Google Scholar
  209. 209.
    Krzan A, Kunaver M, Tisler V (2005) Wood liquefaction using dibasic organic acids and glycols. Acta Chim Slov 52:253–258Google Scholar
  210. 210.
    Liang L, Mao Z, Li Y, Wan C, Wang T, Zhang L, Zhang L (2006) Liquefaction of crop residues for polyol production. Bioresources 1:248–256Google Scholar
  211. 211.
    Food and Agriculture Organization of the United Nations, FAO (2008) The state of food and agriculture. Biofuels: prospects, risks, and opportunities. FAO, RomeGoogle Scholar
  212. 212.
    Borjesson P (2009) Good or bad bioethanol from a greenhouse gas perspective—what determines this? Appl Energ 86:589–594. doi: 10.1016/j.apenergy.2008.11.025 Google Scholar
  213. 213.
    Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi: 10.1126/science.1152747 Google Scholar
  214. 214.
    Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi: 10.1126/science.1151861 Google Scholar
  215. 215.
    Shimada K, Hosoya S, Ikeda T (1997) Condensation reactions of softwood and hardwood lignin model compounds under organic acid cooking conditions. J Wood Chem Technol 17:57–72. doi: 10.1080/02773819708003118 Google Scholar
  216. 216.
    Balat M (2009) Gasification of biomass to produce gaseous products. Energ Source A 31:516–526. doi: 10.1080/15567030802466847 Google Scholar
  217. 217.
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi: 10.1126/science.1137016 Google Scholar
  218. 218.
    Muthaiyan A, Ricke SC (2010) Current perspectives on detection of microbial contamination in bioethanol fermentors. Bioresour Technol 101:5033–5042. doi: 10.1016/j.biortech.2009.11.005 Google Scholar
  219. 219.
    Heist P (2011) Identifying, controlling the most common microbial contaminants. Ethanol Producer Magazine; 2009. Accessed 23 April 2011
  220. 220.
    Basilio ACM, de Araujo PRL, de Morais JOF, da Silva Filho EA, de Morais Jr MA, Simoes DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326. doi: 10.1007/s00284-007-9085-5 Google Scholar
  221. 221.
    Grossman HL, Myers WR, Vreeland VJ, Bruehl R, Alper MD, Bertozzi CR, Clarke J (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. PNAS 101:129–134. doi: 10.1073/pnas.0307128101 Google Scholar
  222. 222.
    Gloyna EF, Li L (1995) Supercritical water oxidation research and development update. Environ Prog 14:182–192. doi: 10.1002/ep.670140318 Google Scholar
  223. 223.
    Gaddy JL (1998) Biological production of acetic acid from waste gases with Clostridium ljungdahlii. U.S. Patent 5807722, 15 September 1998Google Scholar
  224. 224.
    Zahn JA, Saxena J (2011) Novel ethanologenic species Clostridium coskatii. U.S. Patent 2011/0229947 A1, 22 September 2011Google Scholar
  225. 225.
    Heijstra B, Kern E, Koepke M, Segovia S, Liew F (2012) Novel bacteria and methods of use thereof. Patent WO/2012/015317, 2 February 2012Google Scholar
  226. 226.
    Kopke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:320–325. doi: 10.1016/j.copbio.2011.01.005 Google Scholar
  227. 227.
    Lu Q, Zhang J, Zhu XF (2008) Corrosion properties of bio-oil and its emulsions with diesel. Chin Sci Bull 53:3726–3734. doi: 10.1007/s11434-008-0499-7 Google Scholar
  228. 228.
    Czernik S, Johnson DK, Black S (1994) Stability of wood fast pyrolysis oil. Biomass Bioenerg 7:187–192. doi: 10.1016/0961-9534(94)00058-2 Google Scholar
  229. 229.
    Perez MG, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C (2006) Multiphase structure of bio-oils. Energ Fuel 20:364–375. doi: 10.1021/ef050248f Google Scholar
  230. 230.
    Oasmaa A, Elliott DC, Korhonen J (2010) Acidity of biomass fast pyrolysis bio-oils. Energ Fuel 24:6548–6554. doi: 10.1021/ef100935r Google Scholar
  231. 231.
    Wild PD (2011) Biomass pyrolysis for chemicals. Dissertation, University of Groningen. ISBN: 978-90-367-4994-7Google Scholar
  232. 232.
    Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouce JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng. doi: 10.1155/2012/542426 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sonil Nanda
    • 1
    • 2
  • Javeed Mohammad
    • 1
  • Sivamohan N. Reddy
    • 1
  • Janusz A. Kozinski
    • 1
  • Ajay K. Dalai
    • 2
    Email author
  1. 1.Lassonde School of EngineeringYork UniversityTorontoCanada
  2. 2.Department of Chemical and Biological EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations