Biomass Conversion and Biorefinery

, Volume 4, Issue 2, pp 77–86 | Cite as

Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood

Original Article


In this work, Eucalyptus globulus wood was pretreated under non-isothermal autohydrolysis process at 210, 220, and 230 °C, obtaining a pretreated solid with high cellulose content and a hemicellulosic liquid phase (HLP) containing mainly xylose, acetic acid, furfural, xylooligosaccharides, and phenolic compounds. The maximum concentration of xylooligosaccharides (8.97 g/L) and phenolic compounds (2.66 g/L) was obtained at 210 and 230 °C, respectively. To evaluate the effect of HLP addition on the enzymatic hydrolysis using unwashed pretreated solid as substrate, different proportions of HLP were studied. Also, in order to use the whole slurry on enzymatic hydrolysis, the supplementation of xylanases was evaluated. Glucose concentration of 107.49 g/L (corresponding to 74.65 % of conversion) was obtained using pretreated solid at 220 °C liquid/solid ratio (LSR) of 4 g/g and enzyme solid ratio (ESR) of 25 FPU/g—without the addition of HLP. Thus, it was shown that the unwashed pretreated solids are susceptible to enzymatic hydrolysis contributing to reduce operational cost (water consumption). Additionally, the influence of the inhibitory compounds in the HLP was shown to affect the enzymatic hydrolysis. Results indicated that 82.52 g/L of glucose (59.37 % of conversion) was obtained, using 100 % of HLP at LSR of 4 g/g and ESR of 16 FPU/g at 210 °C of pretreated solid. However, a positive effect was shown on the enzymatic hydrolysis when the xylanases were added using 100 % of HLP, increasing to 35 and 27 % in the glucose production with respect to whole slurry without addition of xylanases.


Enzymatic hydrolysis Hydrothermal process Whole-slurry material Hemicellulosic liquid phase Biorefinery Inhibitors 



Cellulose to glucose conversion at 96 h


Cellulose-to-glucose conversion predicted for an infinite reaction time (%)


Cellulose-to-glucose conversion achieved at time (%)


Degree of polymerization


Eucalyptus globulus wood


Enzyme to solid ratio (FPU/g of solid)


Filter paper unit


Glucose concentration at 96 h


Glucan of pre-treated solids (%) on dry basis


Potential glucose (g/L)


Concentration of glucose achieved at time (g/L)


Hemicellulosic liquid phase




High-performance liquid chromatography


Klason lignin on dry basis


Liquid to solid ratio (grams of liquid/gram of solid on dry basis)


Coefficient of determination




Solid yield on dry basis


Enzymatic hydrolysis time (h)


Temperature at time (°C)


Time needed to reach CGCmax/2 (h)


Minimum temperature achieved on a given hydrothermal treatment


Reference temperature (°C)


Unit international


Density of the hydrolysis enzymatic medium (g/L)


  1. 1.
    Boldrin A, Balzan A, Astrup T (2013) Energy and enverionmental analaysis of rapeseed biorefinery conversion process. Biomass Convers Bioref 3:2,127–141. doi:10.1007/s13399-013-0071-9 Google Scholar
  2. 2.
    Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA (2013) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym 92:2154–2162. doi:10.1016/j.carbpol.2012.11.054 CrossRefGoogle Scholar
  3. 3.
    Gullón P, Romaní A, Vila C, Garrote G, Parajó JC (2012) Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels Bioprod Bioref 6:219–232. doi:10.1002/bbb.339 CrossRefGoogle Scholar
  4. 4.
    Ruiz HA, Silva DP, Ruzene DS, Lima LF, Vicente AA, Teixeira JA (2012) Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain—effect of process conditions. Fuel 95:528–536. doi:10.1016/j.fuel.2011.10.060 CrossRefGoogle Scholar
  5. 5.
    Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as analternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51. doi:10.1016/j.rser.2012.11.069 CrossRefGoogle Scholar
  6. 6.
    Kautto J, Realff MJ, Ragauskas J (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Conver Bioref. doi: 10.1007/s13399-013-0074-6
  7. 7.
    Wagner H, Kaltschmitt M (2012) Biochemical and thermochemical conversion of wood to ethanol-simulation and analysis of different process. Biomass Convers Bioref 3:87–102. doi:10.1007/s13399-012-0064-0 CrossRefGoogle Scholar
  8. 8.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. doi:10.1016/S0960-8524(99)00161-3 CrossRefGoogle Scholar
  9. 9.
    Yang B, Dai Z, Ding S, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biogeosciences 2:421–450. doi:10.4155/bfs.11.116 Google Scholar
  10. 10.
    Martín M, Ehmetovic E, Grossmann E (2011) Optimization of water consumption in second generation bioethanol plants. Ind Eng Chem Res 50:3705–3721. doi:10.1021/ie101175p CrossRefGoogle Scholar
  11. 11.
    Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. doi:10.1016/j.biotechadv.2011.05.005 CrossRefGoogle Scholar
  12. 12.
    Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3:26. doi:10.1186/1754-6834-3-26 CrossRefGoogle Scholar
  13. 13.
    Sivers MV, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555–560. doi:10.1021/bp00029a017 CrossRefGoogle Scholar
  14. 14.
    Gao D, Uppugundla N, Chundawat SPS et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5. doi:10.1186/1754-6834-4-5 CrossRefGoogle Scholar
  15. 15.
    García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Negro MJ (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 136–140:353–365. doi:10.1007/s12010-007-9064-0 Google Scholar
  16. 16.
    Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94:305–312. doi:10.1016/j.fuel.2011.12.013 CrossRefGoogle Scholar
  17. 17.
    Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Experimental assessment on the enzymatic hydrolysis of hydrothermally pretreated Eucalyptus globulus wood. Ind Eng Chem Res 49:4653–4663. doi:10.1021/ie100154m CrossRefGoogle Scholar
  18. 18.
    Lavoie J, Capek-Menard E, Gauvin H, Chornet E (2010) Production of pulp from Salix viminalis energy crops using the FIRSST process. Bioresour Technol 101:4940–4946. doi:10.1016/j.biortech.2009.09.021 CrossRefGoogle Scholar
  19. 19.
    Lopes M, Araújo C, Aguedo M et al (2008) The use of olive mill wastewater by wild type Yarrowia lipolytica strains: medium supplementation and surfactant presence effect. J Chem Technol Biotechnol 84:533–537. doi:10.1002/jctb.2075 CrossRefGoogle Scholar
  20. 20.
    Ruiz HA, Vicente AA, Teixeira JA (2012) Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107. doi:10.1016/j.indcrop.2011.08.014 CrossRefGoogle Scholar
  21. 21.
    Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270. doi:10.1016/0168-1656(92)90074-J CrossRefGoogle Scholar
  22. 22.
    Adney B, Baker J, (1996) Measurement of cellulase activities. NERL/TP-510-42628. National Renewable Energy Laboratory, Golden, CO. Accessed 18 February 2013
  23. 23.
    Ruiz HA, Ruzene DS, Silva DP et al (2011) Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164:629–641. doi:10.1007/s12010-011-9163-9 CrossRefGoogle Scholar
  24. 24.
    Holtzapple M, Caram H, Humphrey AE (1984) A comparison of two empirical models for the enzymatic hydrolysis of pretreated poplar wood. Biotechnol Bioeng 26:936–941. doi:10.1002/bit.260260818 CrossRefGoogle Scholar
  25. 25.
    Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712. doi:10.1016/j.biotech.2010.06.93 CrossRefGoogle Scholar
  26. 26.
    Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93. doi:10.1007/s12010-008-8448-0 CrossRefGoogle Scholar
  27. 27.
    Ruiz HA, Ruzene DS, Silva DP et al (2011) Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94. doi:10.1002/jctb.2518 CrossRefGoogle Scholar
  28. 28.
    Ximenes E, Kin Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzyme Microb Technol 46:170–176. doi:10.1016/j.enzmictec.2009.11.001 CrossRefGoogle Scholar
  29. 29.
    Amendola D, De Faveri DM, Egües I, Serrano L, Labidi J, Spigno G (2012) Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresour Technol 107:267–274. doi:10.1016/j.biortech.2011.12.108 CrossRefGoogle Scholar
  30. 30.
    Hodge DB, Karim MN, Schell DJ, McMillan JD (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99:8940–8948. doi:10.1016/j,biortech.2008.05.015 CrossRefGoogle Scholar
  31. 31.
    Shen F, Zhong Y, Saddler JN, Liu R (2011) Relatively high-substrate consistency hydrolysis of steam-pretreated sweet sorghum bagasse at relatively low cellulase loading. Appl Biochem Biotechnol 165:1024–1036. doi:10.1007/s12010-011-9317-9 CrossRefGoogle Scholar
  32. 32.
    Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11. doi:10.1186/1754-6834-2-11 CrossRefGoogle Scholar
  33. 33.
    Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870. doi:10.1002/bit.21115 CrossRefGoogle Scholar
  34. 34.
    Kumar R, Wyman CE (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102:457–467. doi:10.1002/bit.22068 CrossRefGoogle Scholar
  35. 35.
    Zhang J, Viikari L (2012) Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. Bioresour Technol 117:286–291. doi:10.1016/j.biortech.2012.04.072 CrossRefGoogle Scholar
  36. 36.
    Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630. doi:10.1016/j.biortech.2010.06.137 CrossRefGoogle Scholar
  37. 37.
    Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415. doi:10.1016/j.enzmictec.2011.01.007 CrossRefGoogle Scholar
  38. 38.
    Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18. doi:10.1186/1754-6834-4-8 CrossRefGoogle Scholar
  39. 39.
    Alvira P, Tomás-Pejó E, Negro MJ, Ballesteros M (2011) Strategies of xylanase supplementation for an efficient saccharification and cofermentation process from pretreated wheat straw. Biotechnol Prog 4:944–950. doi:10.1002/btpr.623 CrossRefGoogle Scholar
  40. 40.
    Várnai A, Huikko L, Pere J, Siika-aho M et al (2011) Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 102:9096–9104. doi:10.1016/j.biortech.2011.06.059 CrossRefGoogle Scholar
  41. 41.
    Lin ZX, Zhang HM, Ji XJ, Chen JW, Hang H (2011) Hydrolytic enzyme of cellulose for complex formulation applied research. Appl Biochem Biotechnol 164:23–33. doi:10.1007/s12010-010-9111-0 CrossRefGoogle Scholar
  42. 42.
    Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39:897–902. doi:10.1016/j.enzmictec.2006.01.021 CrossRefGoogle Scholar
  43. 43.
    Alvira P, Negro MJ, Ballesteros M (2011) Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102:4552–4558. doi:10.1016/j.biortech.2010.12.112 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aloia Romaní
    • 1
  • Héctor A. Ruiz
    • 1
    • 2
  • Francisco B. Pereira
    • 1
  • Lucília Domingues
    • 1
  • José A. Teixeira
    • 1
  1. 1.IBB—Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Food Research Department, School of ChemistryAutonomous University of CoahuilaSaltilloMexico

Personalised recommendations