Advertisement

Biomass Conversion and Biorefinery

, Volume 3, Issue 3, pp 255–269 | Cite as

Lignin: untapped biopolymers in biomass conversion technologies

  • Manimaran Ayyachamy
  • Finola E. Cliffe
  • Jessica M. Coyne
  • John Collier
  • Maria G. Tuohy
Review Article

Abstract

Lignin is the second most abundant natural aromatic polymer after cellulose in terrestrial ecosystems. Lignins differ in structure, depending on the method of isolation and plant source. However, such differences are not considered to be limiting factors for potential industrial applications. Owing to the lack of toxicity and versatility, several potentially attractive industrial routes exist for the more effective and diverse utilization of lignin. Lignins have been proven to elicit a number of health benefits, viz., anti-inflammatory, anti-carcinogenic, antimicrobial, prebiotic and antioxidant. In addition, lignins have been widely utilised in polymeric materials, carbon fibres, fuels, construction and agriculture. Lignin by-products may be attractive also for developing a range of commercially viable products.

Keywords

Lignin Antioxidant Prebiotic Polymers Lignocellulosic biomass Antimicrobial 

Notes

Acknowledgments

The authors would like to thank Monaghan Biosciences Ltd. and The Irish Research Council (IRC) for financial support.

References

  1. 1.
    Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8(12):576–581CrossRefGoogle Scholar
  2. 2.
    Austin AT, Ballare CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci U S A 107(10):4618–4622CrossRefGoogle Scholar
  3. 3.
    Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp 37:e1745Google Scholar
  4. 4.
    Karkonen A, Koutaniemi S (2010) Lignin biosynthesis studies in plant tissue cultures. J Integr Plant Biol 52(2):176–185CrossRefGoogle Scholar
  5. 5.
    Broda P, Birch PRJ, Brooks PR, Sims PFG (1996) Lignocellulose degradation by Phanerochaete chrysosporium: gene families and gene expression for a complex process. Mol Microbiol 19(5):923–932CrossRefGoogle Scholar
  6. 6.
    Vicuna R (2000) Ligninolysis—a very peculiar microbial process. Mol Biotechnol 14(2):173–176CrossRefGoogle Scholar
  7. 7.
    Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183CrossRefGoogle Scholar
  8. 8.
    Grote M, Klinnert S, Bechmann W (2000) Comparison of degradation state and stability of different humic acids by means of chemolysis with tetramethylammonium hydroxide. J Environ Monit 2(2):165–169CrossRefGoogle Scholar
  9. 9.
    Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8(3):268–273CrossRefGoogle Scholar
  10. 10.
    Regalado V, Rodriguez A, Perestelo F, Carnicero A, dela Fuente G, Falcon MA (1997) Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 63(9):3716–3718Google Scholar
  11. 11.
    Blaschke L, Forstreuter M, Sheppard LJ, Leith IK, Murray MB, Polle A (2002) Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Tree Physiol 22(7):469–477CrossRefGoogle Scholar
  12. 12.
    Neutelings G (2011) Lignin variability in plant cell walls: contribution of new models. Plant Sci 181(4):379–386CrossRefGoogle Scholar
  13. 13.
    Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154(2):555–561CrossRefGoogle Scholar
  14. 14.
    Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20CrossRefGoogle Scholar
  15. 15.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefGoogle Scholar
  16. 16.
    Grabber JH, Lu FC (2007) Formation of syringyl-rich lignins in maize as influenced by feruloylated xylans and p-coumaroylated monolignols. Planta 226(3):741–751CrossRefGoogle Scholar
  17. 17.
    Huttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biot 55(4):387–394CrossRefGoogle Scholar
  18. 18.
    Hatfield RD, Chaptman AK (2009) Comparing-corn types for differences in cell wall characteristics and p-coumaroylation of lignin. J Agric Food Chem 57(10):4243–4249CrossRefGoogle Scholar
  19. 19.
    Martone PT, Estevez JM, Lu FC, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19(2):169–175CrossRefGoogle Scholar
  20. 20.
    Uzal EN, Ros LVG, Pomar F, Bernal MA, Paradela A, Albar JP, Barcelo AR (2009) The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. Physiol Plant 135(2):196–213CrossRefGoogle Scholar
  21. 21.
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905CrossRefGoogle Scholar
  22. 22.
    Weng JK, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci U S A 105(22):7887–7892CrossRefGoogle Scholar
  23. 23.
    Bose SK, Francis RC, Govender M, Bush T, Spark A (2009) Lignin content versus syringyl to guaiacyl ratio amongst poplars. Bioresour Technol 100(4):1628–1633CrossRefGoogle Scholar
  24. 24.
    Lam TBT, Kadoya K, Iiyama K (2001) Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the beta-position, in grass cell walls. Phytochemistry 57(6):987–992CrossRefGoogle Scholar
  25. 25.
    Boyce CK, Zwieniecki MA, Cody GD, Jacobsen C, Wirick S, Knoll AH, Holbrook NM (2004) Evolution of xylem lignification and hydrogel transport regulation. Proc Natl Acad Sci U S A 101(50):17555–17558CrossRefGoogle Scholar
  26. 26.
    Peter G, Neale D (2004) Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol 7(6):737–742CrossRefGoogle Scholar
  27. 27.
    Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRefGoogle Scholar
  28. 28.
    Jeffries TW (1994) Biodegradation of lignin and hemicelluloses. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer Academic, Dordrecht, pp 233–277CrossRefGoogle Scholar
  29. 29.
    Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896CrossRefGoogle Scholar
  30. 30.
    Thevenot M, Dignac MF, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42(8):1200–1211CrossRefGoogle Scholar
  31. 31.
    Cameron MD, Aust SD (2001) Cellobiose dehydrogenase—an extracellular fungal flavocytochrome. Enzym Microb Technol 28(2–3):129–138CrossRefGoogle Scholar
  32. 32.
    Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78(2):93–113CrossRefGoogle Scholar
  33. 33.
    Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44(2):77–87CrossRefGoogle Scholar
  34. 34.
    Guillen F, Martinez MJ, Munoz C, Martinez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339(1):190–199CrossRefGoogle Scholar
  35. 35.
    Dignac MF, Kogel-Knabner I, Michel K, Matzner E, Knicker H (2002) Chemistry of soil organic matter as related to C:N in Norway spruce forest (Picea abies (L.) Karst.) floors and mineral soils. J Plant Nutr Soil Sci 165(3):281–289CrossRefGoogle Scholar
  36. 36.
    Osono T, Takeda H (2001) Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur J Soil Biol 37(1):17–23CrossRefGoogle Scholar
  37. 37.
    Li D, Alic M, Gold MH (1994) Nitrogen regulation of lignin peroxidase gene-transcription. Appl Environ Microbiol 60(9):3447–3449Google Scholar
  38. 38.
    Miltner A, Zech W (1998) Beech leaf litter lignin degradation and transformation as influenced by mineral phases. Org Geochem 28(7–8):457–463CrossRefGoogle Scholar
  39. 39.
    Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24(1):1–58CrossRefGoogle Scholar
  40. 40.
    Kleinert M, Barth T (2008) Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuel 22(2):1371–1379CrossRefGoogle Scholar
  41. 41.
    Baurhoo B, Letellier A, Zhao X, Ruiz-Feria CA (2007) Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult Sci 86(12):2509–2516CrossRefGoogle Scholar
  42. 42.
    Baurhoo B, Phillip L, Ruiz-Feria CA (2007) Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult Sci 86(6):1070–1078Google Scholar
  43. 43.
    Nadif A, Hunkeler D, Kauper P (2002) Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Bioresour Technol 84(1):49–55CrossRefGoogle Scholar
  44. 44.
    Zhao J, Wilkins RM (2000) Controlled release of a herbicide from matrix granules based on solvent-fractionated organosolv lignins. J Agric Food Chem 48(8):3651–3661CrossRefGoogle Scholar
  45. 45.
    Bujanovic BM, Goundalkar MJ, Amidon TE (2012) Increasing the value of a biorefinery based on hot-water extraction: lignin products. TAPPI J 11(1):19–26Google Scholar
  46. 46.
    Amidon TE, Wood CD, Shupe AM, Wang Y, Graves M, Liu SJ (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Biol 2(2):100–120CrossRefGoogle Scholar
  47. 47.
    Liu S, Amidon TE, Francis RC, Ramarao BV, Lai Y-Z, Scott GM (2006) From forest biomass to chemicals and energy. Ind Biotechnol 2:113–120CrossRefGoogle Scholar
  48. 48.
    Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefGoogle Scholar
  49. 49.
    Pan XJ, Xie D, Yu RW, Saddler JN (2008) The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 101(1):39–48CrossRefGoogle Scholar
  50. 50.
    Huijgen WJJ, Smit AT, de Wild PJ, den Uil H (2012) Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin. Bioresour Technol 114:389–398CrossRefGoogle Scholar
  51. 51.
    Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48CrossRefGoogle Scholar
  52. 52.
    Setzer WN (2011) Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. J Mol Model 17(8):1841–1845CrossRefGoogle Scholar
  53. 53.
    Khitrin KS, Fuks SL, Khitrin SV, Kazienkov SA, Meteleva DS (2012) Lignin utilization options and methods. Russ J Gen Chem 82(5):977–984CrossRefGoogle Scholar
  54. 54.
    Ugartondo V, Mitjans M, Vinardell MP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687CrossRefGoogle Scholar
  55. 55.
    Catignani GL, Carter ME (1982) Antioxidant properties of lignin. J Food Sci 47(5):1745CrossRefGoogle Scholar
  56. 56.
    Lu FJ, Chu LH, Gau RJ (1998) Free radical-scavenging properties of lignin. Nutr Cancer 30(1):31–38CrossRefGoogle Scholar
  57. 57.
    Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95(3):309–317CrossRefGoogle Scholar
  58. 58.
    Ugartondo V, Mitjans M, Vinardell MP (2009) Applicability of lignins from different sources as antioxidants based on the protective effects on lipid peroxidation induced by oxygen radicals. Ind Crop Prod 30(2):184–187CrossRefGoogle Scholar
  59. 59.
    Vinardell MP, Ugartondo V, Mitjans M (2008) Potential applications of antioxidant lignins from different sources. Ind Crop Prod 27(2):220–223CrossRefGoogle Scholar
  60. 60.
    Garcia A, Toledano A, Andres MA, Labidi J (2010) Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem 45(6):935–940CrossRefGoogle Scholar
  61. 61.
    Dong X, Dong MD, Lu YJ, Turley A, Lin T, Wu CQ (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crop Prod 34(3):1629–1634CrossRefGoogle Scholar
  62. 62.
    Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81(1):9–18CrossRefGoogle Scholar
  63. 63.
    Li MF, Sun SN, Xu F, Sun RC (2012) Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food Chem 134(3):1392–1398CrossRefGoogle Scholar
  64. 64.
    Lu Q, Liu W, Yang L, Zu Y, Zu B, Zhu M, Zhang Y, Zhang X, Zhang R, Sun Z, Huang J, Zhang X, Li W (2012) Investigation of the effects of different organosolv pulping methods on antioxidant capacity and extraction efficiency of lignin. Food Chem 131(1):313–317CrossRefGoogle Scholar
  65. 65.
    Zhou S, Liu L, Wang B, Xu F, Sun R (2012) Microwave-enhanced extraction of lignin from birch in formic acid: structural characterization and antioxidant activity study. Process Biochem 47:1799–1806Google Scholar
  66. 66.
    García A, González Alriols M, Spigno G, Labidi J (2012) Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J 67:173–185CrossRefGoogle Scholar
  67. 67.
    Matsushita Y, Jo E-K, Inakoshi R, Yagami S, Takamoto N, Fukushima K, Lee S-C (2013) Hydrothermal reaction of sulfuric acid lignin generated as a by-product during bioethanol production using lignocellulosic materials to convert bioactive agents. Ind Crop Prod 42:181–188CrossRefGoogle Scholar
  68. 68.
    Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2013) Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocolloids 30(1):163–172CrossRefGoogle Scholar
  69. 69.
    Sakagami H, Hashimoto K, Suzuki F, Ogiwara T, Satoh K, Ito H, Hatano T, Takashi Y, Fujisawa SI (2005) Molecular requirements of lignin–carbohydrate complexes for expression of unique biological activities. Phytochemistry 66(17):2108–2120CrossRefGoogle Scholar
  70. 70.
    Nakashima H, Murakami T, Yamamoto N, Sakagami H, Tanuma S, Hatano T, Yoshida T, Okuda T (1992) Inhibition of human immunodeficiency viral replication by tannins and related compounds. Antivir Res 18(1):91–103CrossRefGoogle Scholar
  71. 71.
    Nagata K, Sakagami H, Harada H, Nonoyama M, Ishihama A, Konno K (1990) Inhibition of influenza-virus infection by pine cone antitumor substances. Antivir Res 13(1):11–22CrossRefGoogle Scholar
  72. 72.
    Harada H, Sakagami H, Nagata K, Ohhara T, Kawazoe Y, Ishihama A, Hata N, Misawa Y, Terada H, Konno K (1991) Possible involvement of lignin structure in anti-influenza virus activity. Antivir Res 15(1):41–50CrossRefGoogle Scholar
  73. 73.
    Sakagami H, Kushida T, Oizumi T, Nakashima H, Makino T (2010) Distribution of lignin–carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol Ther 128(1):91–105CrossRefGoogle Scholar
  74. 74.
    Fukuchi K, Sakagami H, Okuda T, Hatano T, Tanuma S, Kitajima K, Inoue Y, Inoue S, Ichikawa S, Nonoyama M, Konno K (1989) Inhibition of herpes simplex virus infection by tannins and related compounds. Antivir Res 11(5–6):285–297CrossRefGoogle Scholar
  75. 75.
    Mukoyama A, Ushijima H, Unten S, Nishimura S, Yoshihara M, Sakagami H (1991) Effect of pine seed shell extract on rotavirus and enterovirus infections. Lett Appl Microbiol 13(3):109–111CrossRefGoogle Scholar
  76. 76.
    Mitsuhashi S, Kishimoto T, Uraki Y, Okamoto T, Ubukata M (2008) Low molecular weight lignin suppresses activation of NF-kappa B and HIV-1 promoter. Bioorg Med Chem 16(5):2645–2650CrossRefGoogle Scholar
  77. 77.
    Davidson PM, Branden AL (1981) Antimicrobial activity of non-halogenated phenolic compounds. J Food Prot 44(8):623Google Scholar
  78. 78.
    Zemek J, Kosikova B, Augustin J, Joniak D (1979) Antibiotic properties of lignin components. Folia Microbiol 24(6):483–486CrossRefGoogle Scholar
  79. 79.
    Harada H, Sakagami H, Konno K, Sato T, Osawa N, Fujimaki M, Komatsu N (1988) Induction of antimicrobial activity by antitumor substances from pine cone extract of Pinus parviflora Sieb. et Zucc. Anticancer Res 8(4):581–588Google Scholar
  80. 80.
    Oh-Hara T, Sakagami H, Kawazoe Y, Kaiya T, Komatsu N, Ohsawa N, Fujimaki M, Tanuma S, Konno K (1990) Antimicrobial spectrum of lignin-related pine cone extracts of Pinus parviflora Sieb. et Zucc. In Vivo 4(1):7–12Google Scholar
  81. 81.
    Nelson JL, Alexander JW, Gianotti L, Chalk CL, Pyles T (1994) Influence of dietary fiber on microbial growth in vitro and bacterial translocation after burn injury in mice. Nutrition 10(1):32–36Google Scholar
  82. 82.
    Phillip L, Idziak E, Kubow S (2000) The potential use of lignin in animal nutrition, and in modifying microbial ecology of the gut. Paper presented at the Eastern Nutrition Conference, Animal Nutrition Association Canada, Montreal, Québec, CanadaGoogle Scholar
  83. 83.
    Bourquin LD, Garleb KA, Merchen NR, Fahe GC (1990) Effects of intake and forage level on site and extent of digestion of plant cell wall monomeric components by sheep. J Anim Sci 68(8):2479–2495Google Scholar
  84. 84.
    Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54(5):1822–1828CrossRefGoogle Scholar
  85. 85.
    Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, von Wright A (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46(9):3590–3595CrossRefGoogle Scholar
  86. 86.
    Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. J Food Protect 69(5):1046–1055Google Scholar
  87. 87.
    Pessala P, Schultz E, Kukkola J, Nakari T, Knuutinen J, Herve S, Paasivirta J (2010) Biological effects of high molecular weight lignin derivatives. Ecotoxicol Environ Safe 73(7):1641–1645CrossRefGoogle Scholar
  88. 88.
    Van Beneden S, Roobroeck D, Franca SC, De Neve S, Boeckx P, Hofte M (2010) Microbial populations involved in the suppression of Rhizoctonia solani AG1-1B by lignin incorporation in soil. Soil Biol Biochem 42(8):1268–1274CrossRefGoogle Scholar
  89. 89.
    Libralato G, Avezzu F, Ghirardini AV (2011) Lignin and tannin toxicity to Phaeodactylum tricornutum (Bohlin). J Hazard Mater 194:435–439CrossRefGoogle Scholar
  90. 90.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota—introducing the concept of prebiotics. J Nutr 125(6):1401–1412Google Scholar
  91. 91.
    Yu B, Tsai CC, Hsu JC, Chiou PWS (1998) Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydrases of domestic geese. Brit Poult Sci 39(4):560–567CrossRefGoogle Scholar
  92. 92.
    Wang Y, Marx T, Lora J, Phillip LE, McAllister TA (2009) Effects of purified lignin on in vitro ruminal fermentation and growth performance, carcass traits and fecal shedding of Escherichia coli by feedlot lambs. Anim Feed Sci Technol 151(1–2):21–31CrossRefGoogle Scholar
  93. 93.
    Valencia Z, Chavez ER (1997) Lignin as a purified dietary fiber supplement for piglets. Nutr Res 17(10):1517–1527CrossRefGoogle Scholar
  94. 94.
    Alexy P, Kosikova B, Podstranska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41(13):4901–4908CrossRefGoogle Scholar
  95. 95.
    Banu D, El-Aghoury A, Feldman D (2006) Contributions to characterization of poly(vinyl chloride)–lignin blends. J Appl Polym Sci 101(5):2732–2748CrossRefGoogle Scholar
  96. 96.
    Calgeris I, Cakmakci E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin–starch biodegradable films. Starch-Starke 64(5):399–407CrossRefGoogle Scholar
  97. 97.
    Chen P, Zhang LN, Peng SP, Liao B (2006) Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. J Appl Polym Sci 101(1):334–341CrossRefGoogle Scholar
  98. 98.
    El Raghi S, Zahran RR, Gebril BE (2000) Effect of weathering on some properties of polyvinyl chloride/lignin blends. Mater Lett 46(6):332–342CrossRefGoogle Scholar
  99. 99.
    Gregorova A, Cibulkova Z, Kosikova B, Simon P (2005) Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym Degrad Stab 89(3):553–558CrossRefGoogle Scholar
  100. 100.
    Huang J, Zhang LN, Chen P (2003) Effects of lignin as a filler on properties of soy protein plastics. II. Alkaline lignin. J Appl Polym Sci 88(14):3291–3297CrossRefGoogle Scholar
  101. 101.
    Kai WH, He Y, Asakawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94(6):2466–2474CrossRefGoogle Scholar
  102. 102.
    Kramarova Z, Alexy P, Chodak I, Spirk E, Hudec I, Kosikova B, Gregorova A, Suri P, Feranc J, Bugaj P, Duracka M (2007) Biopolymers as fillers for rubber blends. Polym Adv Technol 18(2):135–140CrossRefGoogle Scholar
  103. 103.
    Lepifre S, Froment M, Cazaux F, Houot S, Lourdin D, Coqueret X, Lapierre C, Baumberger S (2004) Lignin incorporation combined with electron-beam irradiation improves the surface water resistance of starch films. Biomacromolecules 5(5):1678–1686CrossRefGoogle Scholar
  104. 104.
    Liu F, Cao D, Xu K, Chen M (2011) Improving the mechanical properties of poly(vinyl chloride)–lignin blends. http://www.4spepro.org/view.php?article=003847-2011-09-28&category=Composites. Accessed 30th July 2012
  105. 105.
    Liu F, Xu K, Chen M, Cao D (2012) The rheological and mechanical properties of PVC–lignin blends. Int Polym Proc 27(1):121–127CrossRefGoogle Scholar
  106. 106.
    Liu FY, Xu K, Chen MC, Cao DR (2011) The roles of polyacrylate in poly(vinyl chloride)–lignin composites. Polym Compos 32(9):1399–1407zbMATHCrossRefGoogle Scholar
  107. 107.
    Mishra SB, Mishra AK, Kaushik NK, Khan MA (2007) Study of performance properties of lignin-based polyblends with polyvinyl chloride. J Mater Proc Technol 183(2–3):273–276CrossRefGoogle Scholar
  108. 108.
    Mousavioun P, George GA, Doherty WOS (2012) Environmental degradation of lignin/poly(hydroxybutyrate) blends. Polym Degrad Stab 97(7):1114–1122CrossRefGoogle Scholar
  109. 109.
    Ouyang WZ, Huang Y, Luo HJ, Wang DS (2012) Preparation and properties of poly(lactic acid)/cellulolytic enzyme lignin/PGMA ternary blends. Chin Chem Lett 23(3):351–354CrossRefGoogle Scholar
  110. 110.
    Pucciariello R, Villani V, Bonini C, D'Auria M, Vetere T (2004) Physical properties of straw lignin-based polymer blends. Polymer 45(12):4159–4169CrossRefGoogle Scholar
  111. 111.
    Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19(6):628–635CrossRefGoogle Scholar
  112. 112.
    Rosu L, Cascaval CN, Rosu D (2009) Effect of UV radiation on some polymeric networks based on vinyl ester resin and modified lignin. Polym Test 28(3):296–300CrossRefGoogle Scholar
  113. 113.
    Wang H, Easteal AJ, Edmonds N (2008) Prevulcanized natural rubber latex/modified lignin dispersion for water vapour barrier coatings on paperboard packaging. Adv Mater Res 47–50:93–96CrossRefGoogle Scholar
  114. 114.
    Wood BM, Coles SR, Maggs S, Meredith J, Kirwan K (2011) Use of lignin as a compatibiliser in hemp/epoxy composites. Compos Sci Technol 71(16):1804–1810CrossRefGoogle Scholar
  115. 115.
    Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100(9):2569–2574CrossRefGoogle Scholar
  116. 116.
    Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276CrossRefGoogle Scholar
  117. 117.
    Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583Google Scholar
  118. 118.
    Johnson DK, Chornet E, Zmierczak W, Shabtai J (2002) Conversion of lignin into a hydrocarbon product for blending with gasoline. Abstr Pap Am Chem Soc 223:U583–U584Google Scholar
  119. 119.
    Larsen J, Petersen MO, Thirup L, Li HW, Iversen FK (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31(5):765–772CrossRefGoogle Scholar
  120. 120.
    Lumadue MR, Cannon FS, Brown NR (2012) Lignin as both fuel and fusing binder in briquetted anthracite fines for foundry coke substitute. Fuel 97:869–875CrossRefGoogle Scholar
  121. 121.
    Zazo JA, Bedia J, Fierro CM, Pliego G, Casas JA, Rodriguez JJ (2012) Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catal Today 187(1):115–121CrossRefGoogle Scholar
  122. 122.
    Mahmoudi K, Hamdi N, Kriaa A, Srasra E (2012) Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment. Russ J Phys Chem 86(8):1294–1300CrossRefGoogle Scholar
  123. 123.
    Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162(5–6):453–459CrossRefGoogle Scholar
  124. 124.
    Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124(1):227–234CrossRefGoogle Scholar
  125. 125.
    Qin W, Kadla JF (2011) Effect of organoclay reinforcement on lignin-based carbon fibers. Ind Eng Chem Res 50(22):12548–12555CrossRefGoogle Scholar
  126. 126.
    Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and protocols. Methods in molecular biology, vol. 581. Humana, New Jersey, pp 61–77Google Scholar
  127. 127.
    Carioca JOB (2010) Biofuels: problems, challenges and perspectives. Biotechnol J 5(3):260–273CrossRefGoogle Scholar
  128. 128.
    Jegannathan KR, Chan ES, Ravindra P (2009) Harnessing biofuels: a global Renaissance in energy production? Renew Sust Energ Rev 13(8):2163–2168CrossRefGoogle Scholar
  129. 129.
    Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3:27Google Scholar
  130. 130.
    Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285CrossRefGoogle Scholar
  131. 131.
    Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761MathSciNetCrossRefGoogle Scholar
  132. 132.
    Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174(3):246–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manimaran Ayyachamy
    • 1
    • 2
  • Finola E. Cliffe
    • 1
    • 2
  • Jessica M. Coyne
    • 1
    • 2
  • John Collier
    • 2
  • Maria G. Tuohy
    • 1
  1. 1.Molecular Glycobiotechnology Group, Biochemistry, School of Natural SciencesNUI GalwayGalwayIreland
  2. 2.Monaghan Biosciences Ltd.Tyholland, Monaghan, Co.MonaghanIreland

Personalised recommendations