Biomass Conversion and Biorefinery

, Volume 3, Issue 2, pp 79–86 | Cite as

Design and performance study on polypropylene biodiesel pilot plant for non-edible oils

  • Rajesh K. Kumar
  • Channarayappa
  • K. T. Prasanna
  • Balakrishna Gowda
Original Article


A cost-effective, efficient biodiesel production plant that conforms to the decentralized feed stock processing program in vogue in villages of tropical countries of Asia and Africa is the concern of the present study. A 50 L/batch capacity biodiesel reactor has been designed and fabricated using polypropylene consisting of reaction vessel, catalyst tank, settling and washing chamber, evaporation chamber, and methanol recovery system. The performance of the reactor has been studied using pongamia oil, jatropha oil, and waste vegetable oil using transesterification process. The biodiesel yield achieved were 93.75–96 % (v/v) for pongamia, 92.5–95 % (v/v) for jatropha, and 94–95.5 % (v/v) for waste vegetable oil. The biodiesel samples have acceptable fuel standards as per ASTM D-6751 and BIS (ISO15607) specifications.


Biodiesel Non-edible oil Pilot plant Polypropylene Transesterification 



Authors acknowledge the Department of Agriculture, Government of Karnataka for financial support and the Director of Research, University of Agricultural Sciences, Bengaluru for facilities and encouragement. Thanks are due to Mr. Ramachandran Nair, Devaki reinforced plastics Pvt. Ltd., Bengaluru for fabrication of the pilot plant as per the design requirement.


  1. 1.
    Anonymous (2008) National Policy on Biofuels, Ministry of New & Renewable Energy, Government of India. Accessed 17 December 2011
  2. 2.
    Solomon G, Luqman CA, Nor MA (2010) Investigating “Egusi” (Citrullus colocynthis L.) seed oil as potential biodiesel feedstock. Energies 3:607–618CrossRefGoogle Scholar
  3. 3.
    Meher LC, Vidya SSD, Naik SN (2006) Optimization of alkali-catalyzed by transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour Technol 97:1392–1397CrossRefGoogle Scholar
  4. 4.
    Kalbande SR, Vikhe SD (2008) Jatropha and karanj bio-fuel: an alternate fuel for diesel engine. ARPN J Eng Appl Sci 3(1):7–13Google Scholar
  5. 5.
    Kalbande SR, More GR, Nadre RG (2008) Biodiesel production from non-edible oils of jatropha and karanj for utilization in electrical generator. Bioenerg Res 1:170–178CrossRefGoogle Scholar
  6. 6.
    Mamilla VR, Mallikarjun MV, Rao LG (2011) Production of biodiesel from karanja oil. Int J Mech Prod Eng Res Dev 1(1):51–69Google Scholar
  7. 7.
    Demirbas A (2009) Progress and recent trends in biodiesel fuels. Renew Sustain Energy Rev 50:14–34Google Scholar
  8. 8.
    Raheman H, Ghadge SV (2007) Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel 86(16):2568–2573CrossRefGoogle Scholar
  9. 9.
    Ghosal MK, Das DK, Pradhan SC, Sahoo N (2008) Performance study of diesel engine by using mahua methyl ester (biodiesel) and its blends with diesel fuel. Agri Eng Int: the CIGR Ejournal 10Google Scholar
  10. 10.
    Nakpong P, Wootthikanokkhan S (2010) Optimization of biodiesel production from Jatropha curcas L. oil via alkali-catalyzed methanolysis. J Sustain Energy Environ 1:105–109Google Scholar
  11. 11.
    Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721CrossRefGoogle Scholar
  12. 12.
    Topare NS, Chopade SG, Raut SJ, Renge VC, Khedkar SV, Bhagat SL (2011) Biodiesel production from Jatropha curcas oil. Int J Chem Sci 9(4):1607–1612Google Scholar
  13. 13.
    Ikwuagwu OE, Ononogbu IC, Njoku OU (2000) Production of biodiesel using rubber (Hevea brasiliensis (Kunth. Muell.) seed oil. Ind Crop Prod 12:57–62CrossRefGoogle Scholar
  14. 14.
    Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84:335–340CrossRefGoogle Scholar
  15. 15.
    Madhusudana MK, Rajesh KK, Charankumar ME, Prasanna KT, Gowda B, Reddy NVE (2012) Biodiesel production and characterization from surahonne (Calophyllum inophyllum L.) oil. Environ Ecol 30(3):463–466Google Scholar
  16. 16.
    Sahoo PK, Das LM, Babu MKG, Naik SN (2007) Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 86:448–454CrossRefGoogle Scholar
  17. 17.
    Refaat AA, Attia NK, Sibak HA, El Sheltawy ST, El Diwani GI (2008) Production optimization and quality assessment of biodiesel from waste vegetable oil. Int J Environ Sci Tech 5(1):75–82Google Scholar
  18. 18.
    Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  19. 19.
    Knothe G, Gerpen JV, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign, IL(USA)CrossRefGoogle Scholar
  20. 20.
    Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energ Rev 4(2):111–133CrossRefGoogle Scholar
  21. 21.
    Pelly, Michael F (2009) Method and apparatus for refining biodiesel, US patent 7507846Google Scholar
  22. 22.
    Slinn M, Kendall K (2009) Developing the reaction kinetics for a biodiesel reactor. Bioresour Technol 100(7):2324–2327CrossRefGoogle Scholar
  23. 23.
    Dennis YCL, Xuan W, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095CrossRefGoogle Scholar
  24. 24.
    Fan X, Burton R, Austic G (2009) Preparation and characterization of biodiesel produced from recycled canola oil. Open Fuels Energy Sci J 2:113–118CrossRefGoogle Scholar
  25. 25.
    Sulistyo H, Suprihastuti SR, Gatot W, Suardjaja IM (2009) Biodiesel production from high iodine number candlenut oil. Int J Chem Biol Eng 2(2):62–65Google Scholar
  26. 26.
    Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification - a review. Renew Sustain Energy Rev 10:248–268CrossRefGoogle Scholar
  27. 27.
    Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416Google Scholar
  28. 28.
    Canakci M, Gerpen JV (2003) A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans ASAE 46(4):945–954Google Scholar
  29. 29.
    Kywe TT, Oo MM (2009) Production of biodiesel from jatropha oil (Jatropha curcas) in pilot plant. Proc World Acad Sci Eng Technol 38:481–487Google Scholar
  30. 30.
    Sahu G, Das LM, Sharma BK, Naik SN (2011) Pilot plant study on biodiesel production from karanja and jatropha oils. Asia-Pac J Chem Eng 6:38–43CrossRefGoogle Scholar
  31. 31.
    Anonymous. Chemical Resistance Chart. Accessed 17 December 2011
  32. 32.
    Kadry S (2008) Corrosion analysis of stainless steel. Eur J Sci Res 22(4):508–516Google Scholar
  33. 33.
    Hosseini M (2012) Biodiesel production in batch tank reactor equipped to helical ribbon-like agitator. Mod Appl Sci 6(3):40–45Google Scholar
  34. 34.
    McCabe WL, Smith JC, Harriott P (2005) Unit operations of Chemical Engineering. McGrow hill International EditionGoogle Scholar
  35. 35.
    AOCS (1991) Official Test Method Ca 14–56 for total, free and combined glycerol (Iodometric-periodic acid method). In official methods and recommended practices of the American oil chemists’ society. AOCS, Champaign, ILGoogle Scholar
  36. 36.
    Anonymous. Accessed 15 December 2011
  37. 37.
    Poljanšek I, Likozar B (2011) Influence of mass transfer and kinetics on biodiesel production process. In: El-Amin M (ed) Mass transfer in multiphase systems and its applications. InTech, Europe, pp 433–458Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rajesh K. Kumar
    • 1
    • 2
  • Channarayappa
    • 2
  • K. T. Prasanna
    • 1
  • Balakrishna Gowda
    • 1
  1. 1.Biofuel Park, Department of Forestry and Environmental ScienceUniversity Agricultural SciencesBengaluruIndia
  2. 2.Department of BiotechnologyM. S. Ramaiah Institute of TechnologyBengaluruIndia

Personalised recommendations