Skip to main content
Log in

Reliability of the synthesis of C10–C16 linear ethers from 1-alkanols over acidic ion-exchange resins

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

More-than-nine-carbon-atom-containing linear ethers such as ethyl octyl ether (EOE), di-n-pentyl ether (DNPE), di-n-hexyl ether (DNHE) or di-n-octyl ether (DNOE) increase the quality of the diesel blends making them environmentally friendly. In this work, dehydration of 1-pentanol, 1-hexanol and 1-octanol to DNPE, DNHE and DNOE, respectively, as well as the reaction between 1-octanol and ethanol to give EOE are shown to be a good path for obtaining these linear ethers. Acidic macroreticular and gel-type polystyrene-divinylbenzene (PS-DVB) ion-exchange resins have been tested as catalysts for these reactions in liquid phase at 423 K. In the dehydration reactions of 1-pentanol, 1-hexanol and 1-octanol, as a rule, selectivity to linear ether decreased with the length of the ether over macroreticular resins of high and medium DVB%. On the contrary, no differences in selectivity to DNPE, DNHE and DNOE were observed over gel-type and macroreticular resins of low DVB%. In the reaction for obtaining EOE from ethanol and 1-octanol, EOE synthesis competes with those of DNOE and diethyl ether. The best selectivity to EOE and DNOE were found in gel-type and macroreticular resins of low DVB% too. Swelling of the resin in the polar reaction medium was found to be a decisive factor to enhance the selectivity to long linear ethers. Therefore, Amberlyst 121 and CT 224 are proposed to catalyze the synthesis of these ethers; Amberlyst 70 is suggested as the best one for working above 423 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DEE:

Diethyl ether

DNBE:

Di-n-butyl ether

DNHE:

Di-n-hexyl ether

DNOE:

Di-n-octyl ether

DNPE:

Di-n-pentyl ether

DVB:

Divinylbenzene

EOE:

Ethyl octyl ether

EtOH:

Ethanol

HeOH:

Hexanol

[H+]:

Acid capacity (meq H+/g)

ISEC:

Inverse steric exclusion chromatography

n :

Moles

\( n_{\text{HeOH}}^0 \) :

Initial moles of 1-hexanol

\( n_{\text{OcOH}}^0 \) :

Initial moles of 1-octanol

\( n_{\text{PeOH}}^0 \) :

Initial moles of 1-pentanol

\( n_{\text{ROH}}^0 \) :

Initial moles of 1-alkanol

OcOH:

Octanol

PeOH:

Pentanol

PS-DVB:

Polystyrene-divinylbenzene

S :

Selectivity (% mol/mol)

t :

Time (h)

T :

Temperature (K)

T max :

Maximum operation temperature (K)

X :

Conversion (% mol/mol)

Y :

Yield (% mol/mol)

Y′:

Yield (% g/g)

V :

Volume (cm3)

W :

Dry catalyst mass (g)

References

  1. Nylund NO, Aakko P, Niemi S, Paanu T, Berg R (2005) Alcohols and ethers as oxygenates in diesel fuel. IEA Advanced Motor Fuels Annex XXVI

  2. Pecci GC, Clerici MG, Giavazzi F, Ancillotti F, Marchiona M, Patrini (1991) Oxygenated diesel fuels-structure and properties correlation. Proc IX Int Symp Alcohols Fuels (ISAF, Firenze) 1:321–335

    Google Scholar 

  3. Olah GA (1996) Cleaner burning and cetane enhancing diesel fuel supplements. US Patent US5520710A

  4. Ndou AS, Plint N, Coville NJ (2003) Dimerisation of ethanol to butanol over solid-base catalysts. App Catal A Gen 251:337–345

    Article  Google Scholar 

  5. Tsuchida T, Sakuma S, Takeguchi T, Ueda W (2006) Direct synthesis of n-butanol from ethanol over nostoichiometric hydroxyapatite. Ind Eng Chem Res 45:8634–8642

    Article  Google Scholar 

  6. Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JCJ (2011) Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 133:11399–11401

    Article  Google Scholar 

  7. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915

    Article  Google Scholar 

  8. Hansen AC, Zhanga Q, Lyne PWL (2005) Ethanol–diesel fuel blends—a review. Bioresour Technol 96:277–285

    Article  Google Scholar 

  9. Kwanchareon P, Luengnaruemitchai A, Jai-Inb S (2007) Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel 86:1053–1061

    Article  Google Scholar 

  10. Norris JF, Rigby GW (1932) The reactivity of atoms and groups in organic compounds. J Am Chem Soc 54:2088–2100

    Article  Google Scholar 

  11. Corma A, García H (2008) Crossing the borders between homogeneous and heterogeneous catalysis: developing recoverable and reusable catalytic systems. Top Catal 48:8–31

    Article  Google Scholar 

  12. Siril PF, Gross HE, Brown DR (2008) New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J Mol Catal A Chem 279:63–68

    Article  Google Scholar 

  13. Dow website: www.dow.com. Accessed 20 January 2012

  14. Purolite website: www.purolite.com. Accessed 20 January 2012

  15. Tejero J, Cunill F, Iborra M, Izquierdo JF, Fité C (2002) Dehydration of 1-pentanol to di-n-pentyl ether over ion-exchange resin catalysts. J Mol Catal A Chem 182–183:541–554

    Article  Google Scholar 

  16. Bringué R, Tejero J, Iborra M, Izquierdo JF, Fité C, Cunill F (2007) Water effect on the kinetics of 1-pentanol dehydration to di-n-pentyl ether (DNPE) on Amberlyst 70. Top Catal 45:181–186

    Article  Google Scholar 

  17. Medina E, Bringué R, Tejero J, Iborra M, Fité C (2010) Conversion of 1-hexanol to di-n-hexyl ether on acidic catalysts. Appl Catal A Gen 374:41–47

    Article  Google Scholar 

  18. Casas C, Bringué R, Ramírez E, Iborra M, Tejero J (2011) Liquid-phase dehydration of 1-octanol, 1-hexanol and 1-pentanol to linear symmetrical ethers over ion exchange resins. Appl Catal A Gen 396:129–139

    Article  Google Scholar 

  19. Pros S (2009) Ethyl octyl ether synthesis over acidic ion-exchange resins. Ms. Ch. Eng. Thesis, University of Barcelona

  20. Kiviranta-Pääkkönen PK, Struckmann LK, Linnekoski JA, Krause AOI (1998) Dehydration of the alcohol in the etherification of isoamylenes with methanol and ethanol. Ind Eng Chem Res 37:18–24

    Article  Google Scholar 

  21. dos Reis SCM, Lachter ER, Nascimento RSV, Rodrigues JA, Reid MG (2005) Transesterification of Brazilian vegetable oils with methanol over ion-exchange resins. J Am Oil Chem Soc 82:661–665

    Article  Google Scholar 

  22. Honkela ML, Root A, Lindbland M, Outi A, Krause I (2005) Comparison of ion-exchange resin catalysts in the dimerisation of isobutene. Appl Catal A Gen 295:216–223

    Article  Google Scholar 

  23. Kapila D et al (2005) Methods for preparing cycloalkylidene bisphenols.US Patent US2005/0137428A1

  24. Jerabek K (1996) Cross evaluation of strategies in size-exclusion chromatography. ACS Symp Ser 635:211

    Article  Google Scholar 

  25. Ogston AG (1958) The spaces in a uniform random suspension of fibers. Trans Faraday Soc 54:1754

    Article  Google Scholar 

  26. Jerabek K, Holub L (2009) Working state morphology of ion exchange catalysts and its influence on reaction kinetics. 13th Int IUPAC Conf on Polym Organic Chem

  27. Medina E, Bringué R, Tejero J, Iborra M, Fité C, Izquierdo JF, Cunill F (2007) Dehydrocon-densation of 1-hexanol to di-n-hexyl ether (DNHE) on Amberlyst 70. Proc. 6th European Conf. Chem. Eng. Copenhagen. www.nt.ntnu.no/users/skoge/prost/proceedings/ecce6_sep07/upload/1686.pdf

  28. Bringué R, Iborra M, Tejero J, Izquierdo JF, Cunill F, Fité C, Cruz VJ (2006) Thermally stable ion-exchange resins as catalysts for the liquid phase dehydration of 1-pentanol to di-n-pentyl ether (DNPE). J Catal 244:33–42

    Article  Google Scholar 

  29. Harvey BG, Meylemans HA (2011) The role of butanol in the development of sustainable fuel technologies. J Chem Technol Biotechnol 86:2–9

    Article  Google Scholar 

  30. Dogu T, Varisli D (2007) Alcohols as alternatives to petroleum for environmentally clean fuels and petrochemicals. Turk J Chem 31:551–567

    Google Scholar 

  31. Llorente X, Tejero J, Iborra M, Bringué B, Cunill F, Izquierdo JF, Fité C (2009) Conversión de 1-octanol a di-n-octil éter sobre resinas ácidas con eliminación simultánea de agua. 9th SECAT Congress. Ciudad Real

  32. Petrus L, Stamhuis EH, Joosten EH (1981) Thermal deactivation of strong-acid ion-exchange resin in water. Ind Eng Chem Prod Res Dev 20:366–71

    Article  Google Scholar 

  33. Bothe N, Döscher F, Klein J, Widdecke H (1979) Thermal stability of sulfonated styrene-divinylbenzene resins. Polymer 20:850–54

    Article  Google Scholar 

  34. Alonso DM, Bond JQ, Serrano-Ruiz JC, Dumesic JA (2010) Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes. Green Chem 12:992–999

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Science and Education Ministry of Spain (project CTQ2007-60691/PPQ and CTQ2010-16047). The authors thank Rohm and Haas France and Purolite for providing Amberlyst and CT ion-exchange resins, respectively. We thank also Dr. Karel Jerabek of Institute of Chemical Process Fundamentals (Prague, Czech Republic) for the structural and textural analysis made by the ISEC method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tejero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, C., Guilera, J., Ramírez, E. et al. Reliability of the synthesis of C10–C16 linear ethers from 1-alkanols over acidic ion-exchange resins. Biomass Conv. Bioref. 3, 27–37 (2013). https://doi.org/10.1007/s13399-012-0051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-012-0051-5

Keywords

Navigation