Skip to main content

Advertisement

Log in

6-regular partitions: new combinatorial properties, congruences, and linear inequalities

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

We consider the number of the 6-regular partitions of n, \(b_6(n)\), and give infinite families of congruences modulo 3 (in arithmetic progression) for \(b_6(n)\). We also consider the number of the partitions of n into distinct parts not congruent to \(\pm 2\) modulo 6, \(Q_2(n)\), and investigate connections between \(b_6(n)\) and \(Q_2(n)\) providing new combinatorial interpretations for these partition functions. In this context, we discover new infinite families of linear inequalities involving Euler’s partition function p(n). Infinite families of linear inequalities involving the 6-regular partition function \(b_6(n)\) and the distinct partition function \(Q_2(n)\) are proposed as open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ahmed, Z., Baruah, N.D.: New congruences for \(\ell \)-regular partitions for \(\ell \in \{5, 6, 7, 49\}\). Ramanujan J. 40(3), 649–668 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E.: The Theory of Partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). (Reprint of the 1976 original)

    Google Scholar 

  3. Andrews, G.E., Hirschhorn, M.D., Sellers, J.A.: Arithmetic properties of partitions with even parts distinct. Ramanujan J. 23(1–3), 169–181 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Andrews, G.E., Merca, M.: The truncated pentagonal number theorem. J. Combin. Theory Ser. A 119, 1639–1643 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Andrews, G.E., Merca, M.: Truncated theta series and a problem of Guo and Zeng. J. Combin. Theory Ser. A 154, 610–619 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Andrews, G.E., Merca, M.: On the number of even parts in all partitions of \(n\) into distinct parts. Ann. Combin. 24, 47–54 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Andrews, G.E., Newman, D.: The minimal excludant in integer partitions. J. Integer Seq. 23(2, Art. 20.2.3), 11 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Ballantine, C., Merca, M.: On identities of Watson type. Ars Math. Contemp. 17, 277–290 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Ballantine, C., Merca, M.: The minimal excludant and colored partitions. Sém. Lothar. Combin. 84B, Article # 23 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Ballantine, C., Merca, M.: Combinatorial proof of the minimal excludant theorem. Int. J. Number Theory 17(8), 1765–1779 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Ballantine, C., Merca, M.: Almost 3-regular overpartitions. Ramanujan J. 58(3), 957–971 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Ballantine, C., Merca, M., Passary, D., Yee, A.J.: Combinatorial proofs of two truncated theta series theorems. J. Combin. Theory Ser. A 160, 168–185 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Ballantine, C., Merca, M., Radu, C.-S.: Parity of \(3\)-regular partition numbers and Diophantine equations. arXiv:2212.09810 (2022)

  14. Ballantine, C., Welch, A.: Amanda, PED and POD partitions: combinatorial proofs of recurrence relations. Discret. Math. 346, 3, Paper No. 113259 (2023)

    MATH  Google Scholar 

  15. Carlitz, L., Subbarao, M.V.: A simple proof of the quintuple product identity. Proc. Am. Math. Soc. 32, 42–44 (1972)

    MathSciNet  MATH  Google Scholar 

  16. Carlson, R., Webb, J.J.: Infinite families of infinite families of congruences for \(k\)-regular partitions. Ramanujan J. 33, 329–337 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Cui, S.-P., Gu, N.S.S.: Arithmetic properties of \(\ell \)-regular partitions. Adv. Appl. Math. 51(4), 507–523 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Dandurand, B., Penninston, D.: \(\ell \)-Divisibility of \(\ell \)-regular partition functions. Ramanujan J. 19, 63–70 (2009)

    MathSciNet  Google Scholar 

  19. Furcy, D., Penniston, D.: Congruences for \(\ell \)-regular partition functions modulo \(3\). Ramanujan J. 27, 101–108 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Gasper, G., Rahman, M.: Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, vol. 35. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  21. Guo, V.J.W., Zeng, J.: Two truncated identities of Gauss. J. Combin. Theory Ser. A 120, 700–707 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Hirschhorn, M.D., Sellers, J.A.: Elementary proofs of parity results for \(5\)-regular partitions. Bull. Aust. Math. Soc. 81(1), 58–63 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Hou, Q.-H., Sun, L.H., Zhang, L.: Quadratic forms and congruences for \(\ell \)-regular partitions modulo \(3\), \(5\) and \(7\). Adv. Appl. Math. 70, 32–44 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Katriel, J.: Asymptotically trivial linear homogeneous partition inequalities. J. Number Theory 184, 107–121 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Lovejoy, J., Penniston, D.: \(3\)-regular partitions and a modular \(K3\) surface. Contemp. Math. 291, 177–182 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Merca, M.: Fast algorithm for generating ascending compositions. J. Math. Model. Algorithms 11, 89–104 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Merca, M.: A generalization of Euler’s pentagonal number recurrence for the partition function. Ramanujan J. 37, 589–595 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Merca, M.: A new look on the truncated pentagonal number theorem. Carpathian J. Math. 32, 97–101 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Merca, M.: Higher-order difference and higher-order partial sums of Euler’s partition function. Ann. Acad. Rom. Sci. Ser. Math. Appl. 10(1), 59–71 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Merca, M.: On a combinatorial interpretation of the bisectional pentagonal number theorem. J. Ramanujan Soc. Math. Math. Sci. 7(1), 7–18 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Merca, M.: Truncated theta series and Rogers–Ramanujan functions. Exp. Math. 30(3), 364–371 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Merca, M.: On the sum of parts in the partitions of \(n\) into distinct parts. Bull. Aust. Math. Soc. 104(2), 228–237 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Merca, M.: On the partitions into distinct parts and odd parts. Quaest. Math. 44(8), 1095–1105 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Merca, M.: Generalized Lambert series and Euler’s pentagonal number theorem. Mediterr. J. Math. 18, 29 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Merca, M.: Polygonal numbers and Rogers–Ramanujan–Gordon theorem. Ramanujan J. 55, 783–792 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Merca, M.: On the number of partitions into parts not congruent to \(0, \pm 3 ~(mod \; 12)\). Period. Math. Hungar. 83, 133–143 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Merca, M.: Linear inequalities concerning partitions into distinct parts. Ramanujan J. 58, 491–503 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Merca, M.: On two truncated quintuple series theorems. Exp. Math. 31(2), 606–610 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Merca, M.: Rank partition functions and truncated theta identities. Appl. Anal. Discret. Math. (2021). https://doi.org/10.2298/AADM190401023M

    Article  MATH  Google Scholar 

  40. Merca, M., Katriel, J.: A general method for proving the non-trivial linear homogeneous partition inequalities. Ramanujan J. 51(2), 245–266 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Merca, M., Wang, C., Yee, A.J.: A truncated theta identity of Gauss and overpartitions into odd parts. Ann. Combin. 23, 907–915 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Merca, M., Yee, A.J.: On the sum of parts with multiplicity at least \(2\) in all the partitions of \(n\). Int. J. Number Theory 17(3), 665–681 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Penniston, D.: The \(p^a\)-regular partition function modulo \(p^j\). J. Number Theory 94, 320–325 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Penniston, D.: Arithmetic of \(\ell \)-regular partition functions. Int. J. Number Theory 4, 295–302 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. Published electronically at http://oeis.org (2022)

  46. Smoot, N.A.: On the computation of identities relating partition numbers in arithmetic progressions with eta quotients: an implementation of Radu’s algorithm. J. Symb. Comput. 104, 276–311 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Subbarao, M.V., Vidyasagar, M.: On Watson’s quintuple product identity. Proc. Am. Math. Soc. 26, 23–27 (1970)

    MathSciNet  MATH  Google Scholar 

  48. Wang, L.: Congruences for \(5\)-regular partitions modulo powers of \(5\). Ramanujan J. 44, 343–358 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Wang, L.: Arithmetic properties of \(7\)-regular partitions. Ramanujan J. 47, 99–115 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Webb, J.J.: Arithmetic of the \(13\)-regular partition function modulo \(3\). Ramanujan J. 25, 49–56 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Xia, E.X.W.: Congruences for some \(\ell \)-regular partitions modulo \(l\). J. Number Theory 152, 105–117 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Xia, E.X.W., Yao, O.X.M.: Parity results for \(9\)-regular partitions. Ramanujan J. 34, 109–117 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Xia, E.X.W., Zhao, X.: Truncated sums for the partition function and a problem of Merca. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 116, 22 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Ballantine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballantine, C., Merca, M. 6-regular partitions: new combinatorial properties, congruences, and linear inequalities. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 159 (2023). https://doi.org/10.1007/s13398-023-01492-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01492-w

Keywords

Mathematics Subject Classification

Navigation