Skip to main content
Log in

Construction of general forms of ordinary generating functions for more families of numbers and multiple variables polynomials

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The aim of this paper is to construct general forms of ordinary generating functions for special numbers and polynomials involving Fibonacci type numbers and polynomials, the Lucas numbers and polynomials, the Chebyshev polynomials, the Sextet polynomials, Humbert type numbers and polynomials, chain and anti-chain polynomials, rank polynomials of the lattices, length of any alphabet of words, partitions, and other graph polynomials. By applying the Euler transform and the Lambert series to these generating functions, many new identities and relations are derived. By using differential equations of these generating functions, some new recurrence relations for these polynomials are found. Moreover, general Binet’s type formulas for these polynomials are given. Finally, some new classes of polynomials and their corresponding certain family of special numbers are investigated with the help of these generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

References

  1. Alkan, M.: The generalized Fibonacci sequences on an integral domain. Montes Taurus J. Pure Appl. Math. 3(2), 60–69 (2021)

    MathSciNet  Google Scholar 

  2. Askey, R., Ismail, M.E.-H.: A generalization of ultraspherical polynomials. In: Erdos, P., Alpar, L., Halasz, G., Sarkozy, A. (eds.) Studies in Pure Mathematics. To the Memory of Paul Turán. Birkhäuser, Basel (1983)

    Google Scholar 

  3. Belbachir, H., Benmezai, A., Bouyakoubc, A.: The \(q\) -analogue of a specific property of second order linear recurrences. Montes Taurus J. Pure Appl. Math. 5(3), 49–57 (2023)

    Google Scholar 

  4. Bouali, A.: Generalized Humbert polynomials and second-order partial differential operators. Bull. Sci. Math. 133, 733–755 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Boussayoud, A.: On some identities and generating functions for Pell–Lucas numbers. Online J. Anal. Combin. 12, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bravo, J.J., Herrera, J.L.: Generalized Padovan sequences. Commun. Korean Math. Soc. 37(4), 977–988 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Charalambides, C.A.: Enumerative Combinatorics. Chapman and Hall-CRC, London (2002)

    MATH  Google Scholar 

  8. Cyvin, S.J., Gutman, I.: Kekule Structures in Benzenoid Hydrocarbons. Springer, Berlin (1988)

    MATH  Google Scholar 

  9. Deza, E., Deza, M.M.: Figurate Numbers. World Scientific Publishing Co. Pte. Ltd., Singapore (2012)

  10. Djordjevic, G.B.: Polynomials related to generalized Chebyshev polynomials. Filomat 23(3), 279–290 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Djordjević, G.B., Milovanovic, G.V.: Special Classes of Polynomials. University of Niš, Faculty of Technology, Leskovac (2014)

    Google Scholar 

  12. Forgacs, T., Tran, K.: Polynomials with rational generating functions and real zeros. J. Math. Anal. Appl. 443(2), 631–651 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Forgacs, T., Tran, K.: Hyperbolic polynomials and linear-type generating functions. J. Math. Anal. Appl. 488(2), 124085 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Gegenbauer, L.: Zur Theorie der functionen \(C_{n}^{v}(x) \). Osterreichische Akademie der Wissenschaften Mathematisch Naturwissen Schaftliche Klasse Denkscriften 48, 293–316 (1884)

    MATH  Google Scholar 

  15. Goubi, M.: Successive derivatives of Fibonacci type polynomials of higher order in two variables. Filomat 32(14), 5149–5159 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Goubi, M.: On combinatorial formulation of Fermat quotients and generalization. Montes Taurus J. Pure Appl. Math. 4(1), 59–76 (2022)

    Google Scholar 

  17. Goubi, M.: Generating functions for products of powers of Fibonacci numbers. Fibonacci Q. 1(2), 1–16 (1963)

    MathSciNet  Google Scholar 

  18. Gould, H.W.: Inverse series relations and other expansions involving Humbert polynomials. Duke Math. J. 32(4), 697–712 (1965)

    MathSciNet  MATH  Google Scholar 

  19. Horadam, A.F.: Genocchi polynomials. In: Applications of Fibonacci Numbers, vol. 4 (Winston-Salem, NC, 1990), pp. 145–166. Kluwer Acad. Publ., Dordrecht (1991)

  20. Hosoya, H., Yamaguchi, T.: Sextet polynomial. A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons. Tetrahedron Lett. 52, 4659–4662 (1975)

    Google Scholar 

  21. Humbert, P.: Some extensions of Pincherle’s polynomials. Proc. Edinb. Math. Soc. 39(1), 21–24 (1921)

    MathSciNet  Google Scholar 

  22. Khan, S., Nahid, T., Riyasat, M.: Partial derivative formulas and identities involving \(2\)-variable Simsek polynomials. Bol. Soc. Mat. Mex. 26, 1–13 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Khan, S., Nahid, T., Riyasat, M.: Properties and graphical representations of the \(2\)-variable form of the Simsek polynomials. Vietnam J. Math. 50, 95–109 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Kilar, N., Simsek, Y.: Identities for special numbers and polynomials involving Fibonacci-type polynomials and Chebyshev polynomials. Adv. Stud. Contemp. Math. 30(4), 493–502 (2020)

    MATH  Google Scholar 

  25. Koshy, T.: Fibonacci and Lucas Numbers with Applications, vol. 2. Wiley, Hoboken (2019)

    MATH  Google Scholar 

  26. Kucukoglu, I., Simsek, Y.: On a family of special numbers and polynomials associated with Apostol-type numbers and polynomials and combinatorial numbers. Appl. Anal. Discrete Math. 13, 478–494 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Kucukoglu, I., Simsek, B., Simsek, Y.: An approach to negative hypergeometric distribution by generating function for special numbers and polynomials. Turk. J. Math. 43, 2337–2353 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Kucukoglu, I., Simsek, B., Simsek, Y.: Generating functions for new families of combinatorial numbers and polynomials: approach to Poisson–Charlier polynomials and probability distribution function. Axioms 8(4), 1–16 (2019)

    MATH  Google Scholar 

  29. Lee, G.-Y., Lee, S.-G., Kim, J.-S., Shin, H.-K.: The Binet formula and representations of k-generalized Fibonacci numbers. Fibonacci Q. 39(2), 158–164 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Li, G., Liu, L.L., Wang, Y.: Analytic properties of sextet polynomials of hexagonal systems. J. Math. Chem. 59, 719–734 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  32. Munarini, E.: Combinatorial properties of the antichains of a garland. Integers 9, 353–374 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Ones, O., Alkan, M.: On generalizations of Tribonacci numbers. Montes Taurus J. Pure Appl. Math. 4(1), 135–141 (2022)

    Google Scholar 

  34. Ozdemir, G., Simsek, Y.: Generating functions for two-variable polynomials related to a family of Fibonacci type polynomials and numbers. Filomat 30(4), 969–975 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Ozdemir, G., Simsek, Y., Milovanovic, G.V.: Generating functions for special polynomials and numbers including Apostol-type and Humbert-type polynomials. Mediterr. J. Math. 14, 1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Pincherle, S.: Una nuova extensione delle funzione spherich. Mem. R. Accad. Bologna 5, 337–362 (1890)

    Google Scholar 

  37. Qi, F.: Three closed forms for convolved Fibonacci numbers. Results Nonlinear Anal. 3(4), 185–195 (2020)

    Google Scholar 

  38. Rybolowicz, B., Tereszkiewicz, A.: Generalized tricobsthal and generalized tribonacci polynomials. Appl. Math. Comput. 325, 297–308 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Simsek, Y.: Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and \(p\)-adic \(q\) -integrals. Turk. J. Math. 42, 557–577 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Simsek, Y.: A new family of combinatorial numbers and polynomials associated with Peters numbers and polynomials. Appl. Anal. Discrete Math. 14, 627–640 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Simsek, Y.: Applications of constructed new families of generating-type functions interpolating new and known classes of polynomials and numbers. Math. Meth. Appl. Sci. 44, 11245–11268 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier Inc, Amsterdam (2012)

    MATH  Google Scholar 

  43. Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press, Wiley, New York (1984)

  44. Srivastava, H.M., Kucukoğlu, I., Simsek, Y.: Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials. J. Number Theory 181, 117–146 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Suetin, P.K.: Ultraspherical Polynomials. Encyclopedia of Mathematics. EMS Press, Helsinki (2001)

    Google Scholar 

  46. Tran, K.: The root distribution of polynomials with a three-term recurrence. J. Math. Anal. Appl. 421(1), 878–892 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Uygun, S.: On the bounds for the spectral norms of geometric circulant matrices with generalized Jacobsthal and Jacobsthal Lucas numbers. Montes Taurus J. Pure Appl. Math. 4(1), 107–119 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We sincerely thank the referees for their valuable suggestions.

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilmaz Simsek.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek, Y. Construction of general forms of ordinary generating functions for more families of numbers and multiple variables polynomials. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 130 (2023). https://doi.org/10.1007/s13398-023-01464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01464-0

Keywords

Mathematics Subject Classification

Navigation