Skip to main content
Log in

A generalized ACK structure and the denseness of norm attaining operators

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Inspired by the recent work of Cascales et al., we introduce a generalized concept of ACK structure on Banach spaces. Using this property, which we call by the quasi-ACK structure, we are able to extend known universal properties on range spaces concerning the density of norm attaining operators. We provide sufficient conditions for quasi-ACK structure of spaces and results on the stability of quasi-ACK structure. As a consequence, we present new examples satisfying (Lindenstrauss) property B\(^k\), which have not been known previously. We also prove that property B\(^k\) is stable under injective tensor products in certain cases. Moreover, ACK structure of some Banach spaces of vector-valued holomorphic functions is also discussed, leading to new examples of universal BPB range spaces for certain operator ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Acosta, M.D., Aron, R.M., García, D., Maestre, M.: The Bishop–Phelps–Bollobás theorem for operators. J. Funct. Anal. 254(11), 2780–2799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, M.D., Aguirre, F.J., Payá, R.: A new sufficient condition for the denseness of norm attaining operators. Rocky Mt. J. Math. 26(2), 407–418 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acosta, M.D., Becerra Guerrero, J., García, D., Kim, S.K., Maestre, M.: Bishop–Phelps–Bollobás property for certain spaces of operators. J. Math. Anal. Appl. 414(2), 532–545 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aron, R.M., Cascales, B., Kozhushkina, O.: The Bishop–Phelps–Bollobás theorem and Asplund operators. Proc. Am. Math. Soc. 139(10), 3553–3560 (2011)

    Article  MATH  Google Scholar 

  5. Aron, R., Choi, Y.S., Kim, S.K., Lee, H.J., Martín, M.: The Bishop–Phelps–Bollobás version of Lindenstrauss properties A and B. Trans. Am. Math. Soc. 367(9), 6085–6101 (2015)

    Article  MATH  Google Scholar 

  6. Bollobás, B.: An extension to the theorem of Bishop and Phelps. Bull. Lond. Math. Soc. 2, 181–182 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brosowski, B., Deutch, F.: On some geometric properties of suns. J. Approx. Theory 10, 245–267 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cascales, B., Guirao, A.J., Kadets, V.: A Bishop–Phelps–Bollobás type theorem for uniform algebras. Adv. Math. 240, 370–382 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cascales, B., Guirao, A.J., Kadets, V., Soloviova, M.: \(\Gamma \)-flatness and Bishop–Phelps–Bollobás type theorems for operators. J. Funct. Anal. 274, 863–888 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cascales, B., Namioka, I., Vera, G.: The Lindelöf property and fragmentability. Proc. Am. Math. Soc. 128, 3301–3309 (2000)

    Article  MATH  Google Scholar 

  11. Choi, Y.S., Lee, H.J., Song, S.G.: Bishop’s theorem and differentiability of a subspace of \(C_b(K)\). Isr. J. Math. 180, 93–118 (2010)

    Article  MATH  Google Scholar 

  12. Dales, H.G.: Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, vol. 24. The Clarendon Press, Oxford University Press, New York (2000)

    Google Scholar 

  13. Dantas, S., García, D., Maestre, M., Martín, M.: The Bishop–Phelps–Bollobás property for compact operators. Can. J. Math. 70, 53–73 (2018)

    Article  MATH  Google Scholar 

  14. Harmand, P., Werner, D., Werner, W.: M-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547. Springer, Berlin

  15. Hu, Z., Smith, M.A.: On the extremal structure of the unit balls of Banach spaces of weakly continuous functions and their duals. Trans. Am. Math. Soc. 349(5), 1901–1918 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson, J., Wolfe, J.: Norm attaining operators. Studia Math. 65, 7–19 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, J., Wolfe, J.: Norm attaining operators and simultaneously continuous retractions. Proc. Am. Math. Soc. 86, 609–612 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, S.K., Lee, H.J.: A Urysohn-type theorem and the Bishop–Phelps–Bollobás theorem for holomorphic functions. J. Math. Anal. Appl. 480, 123393 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lacey, H.E.: The Isometric Theory of Classical Banach Spaces. Springer, Berlin (1972)

    Google Scholar 

  20. Lima, A.: Intersection properties of balls in spaces of compact operators. Ann. Inst. Fourier Grenoble 28, 35–65 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindenstrauss, J.: On operators which attain their norm. Isr. J. Math. 1, 139–148 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martín, M.: Norm-attaining compact operators. J. Funct. Anal. 267, 1585–1592 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martín, M.: The version for compact operators of Lindenstrauss properties A and B. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 110, 269–284 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Megginson, R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  25. Mujica, J.: Linearization of bounded holomorphic mappings on Banach spaces. Trans. Am. Math. Soc. 324, 867–887 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruess, W.M., Stegall, C.P.: Extreme points in duals of operator spaces. Math. Ann. 261, 535–546 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math. Springer, London, xiv, 225 pp (2002)

  28. Schachermayer, W.: Norm attaining operators on some classical Banach spaces. Pac. J. Math. 105, 427–438 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stegall, Ch.: The Radon–Nikodým property in conjugate Banach spaces. II. Trans. Am. Math. Soc. 264(2), 507–519 (1981)

    MATH  Google Scholar 

  30. Stout, E.L.: The Theory of Uniform Algebras. Bogden & Quigley Inc., Tarrytown-on-Hudson (1971)

    MATH  Google Scholar 

  31. Tseitlin, I.I.: The extreme points of the unit balls of certain spaces of operators. Mat. Zametki. 20, 521–527 (1976)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sun Kwang Kim and Miguel Martín for valuable comments and remarks leading to improvement of this paper. The authors also want to thank anonymous referees for their careful reading and helpful suggestions. The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1A6A3A01086079) and by the Ministry of Education, Science and Technology [NRF-2020R1A2C1A01010377]. The second author was supported by NRF [NRF-2019R1A2C1003857], by POSTECH Basic Science Research Institute Grant [NRF-2021R1A6A1A10042944] and by a KIAS Individual Grant [MG086601] at Korea Institute for Advanced Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingu Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G., Jung, M. A generalized ACK structure and the denseness of norm attaining operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 87 (2023). https://doi.org/10.1007/s13398-023-01421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01421-x

Keywords

Mathematics Subject Classification

Navigation