Skip to main content
Log in

Abstract

The notion of well-posedness has drawn the attention of many researchers in the field of nonlinear analysis, as it allows to explore problems in which exact solutions are not known and/or computationally hard to compute. Roughly speaking, for a given problem, well-posedness guarantees the convergence of approximations to exact solutions via an iterative method. Thus, in this paper we extend the concept of Levitin–Polyak well-posedness to split equilibrium problems in real Banach spaces. In particular, we establish a metric characterization of Levitin–Polyak well-posedness by perturbations and also show an equivalence between Levitin–Polyak well-posedness by perturbations for split equilibrium problems and the existence and uniqueness of their solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The author acknowledge that the data presented in this study must be deposited and made publicly available in an acceptable repository, prior to publication.

References

  1. Tykhonov, A.N.: On the stability of the functional optimization problem. USSR J. Comput. Math. Math. Phys. 6, 631–634 (1966)

    Google Scholar 

  2. Furi, M., Vignoli, A.: About well-posed optimization problems for functionals in metric spaces. J. Optim. Theory Appl. 5(3), 225–229 (1970)

    MathSciNet  MATH  Google Scholar 

  3. Levitin, E.S., Polyak, B.T.: Convergence of minimizing sequences in conditional extremum problems. Sov. Math. Dokl. 7, 764–767 (1966)

    MATH  Google Scholar 

  4. Zolezzi, T.: Well-posedness criteria in optimization with application to the calculus of variations. Nonlinear Anal. TMA 25, 437–453 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Zolezzi, T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Huang, X.X., Yang, X.Q.: Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  8. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I+II. Springer, New York (2003)

    MATH  Google Scholar 

  9. Ferrentino, R.: Variational inequalities and optimization problems. Appl. Math. Sci. 47, 2327–2343 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Jolaoso, L.O., Shehu, Y., Cho, Y.J.: Convergence analysis for variational inequalities and fixed point problems in reflexive Banach spaces. J. Inequal. Appl. 2021, 44 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Lucchetti, R., Patrone, F.: A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities. Numer. Funct. Anal. Optim. 3(4), 461–476 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Lucchetti, R., Patrone, F.: Some properties of well-posed variational inequalities governed by linear operators. Numer. Funct. Anal. Optim. 5(3), 349–361 (1982/83)

  13. Hu, R., Fang, Y.P.: Levitin–Polyak well-posedness of variational inequalities. Nonlinear Anal. 72, 373–381 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Huang, X.X., Yang, X.Q.: Levitin–Polyak well-posedness in generalized variational inequality problems with functional constraints. J. Ind. Manag. Optim. 3, 671–684 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Huang, X.X., Yang, X.Q., Zhu, D.L.: Levitin–Polyak well-posedness of variational inequality problems with functional constraints. J. Glob. Optim. 44(2), 159–174 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Fang, Y.P., Huang, N.J., Yao, J.C.: Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur. J. Oper. Res. 201(3), 682–692 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Goeleven, D., Mentagui, D.: Well-posed hemivariational inequalities. Numer. Funct. Anal. Optim. 16, 909–921 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Xiao, Y.B., Huang, N.J., Wong, M.M.: Well-posedness of hemivariational inequalities and inclusion problems. Taiwan. J. Math. 15(3), 1261–1276 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Cen, J., Min, C., Sofonea, M., Zeng, S.: Generalized well-posedness results for a class of hemivariational inequalities. J. Math. Anal. Appl. 507(2), 125839 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. Comp. Rend. Hebd. séances l’Acad. Sci. 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  21. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59(2), 301–323 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Dong, Q.L., Lu, Y.Y., Yang, J., He, S.: Approximately solving multi-valued variational inequalities by using a projection and contraction algorithm. Numer. Algorithms 76(3), 799–812 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Alakoya, T.O., Jolaosoa, L.O., Mewomo, O.T.: Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization 70(3), 545–574 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Sunthrayuth, P., Kumam, P.: Viscosity approximation methods based on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces. Math. Comput. Model. 58, 1814–1828 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Bianchia, M., Kassay, G., Pini, R.: Well-posed equilibrium problems. Nonlinear Anal. 72, 460–468 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Fang, Y.P., Hu, R., Huang, N.J.: Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Comput. Math. Appl. 55, 89–100 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Hieu, D.V., Gibali, A.: Strong convergence of inertial algorithms for solving equilibrium problems. Optim. Lett. 14, 1817–1843 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Kong, H.: The new extragradient method extended to equilibrium problems. RACSAM 113, 2113–2126 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space. Optimization 70, 387–412 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Hieu, D.V., Cho, Y.J., Xiao, Y.-B.: Modified extragradient algorithms for solving equilibrium problems. Optimization 67, 2003–2029 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Rehman, H., Kumam, P., Gibali, A., Kumam, W.: Convergence analysis of a general inertial projection-type method for solving pseudomonotone equilibrium problems with applications. J. Inequal. Appl. 2021, 63 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Anh, P.N., An, L.T.H.: The subgradient extragradient method extended to equilibrium problems. Optimization 64(2), 225–248 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Oliveira, P., Santos, P., Silva, A.: A Tikhonov-type regularization for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 401(1), 336–342 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Cotrina, J., Zúñiga, J.: Quasi-equilibrium problems with non-self constraint map. J. Glob. Optim. 75, 177–197 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Li, J.: Existence of solutions to split variational inequality problems and split minimization problems in Banach spaces. J. Nonlinear Convex Anal. 19(5), 755–770 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Hu, R., Fang, Y.P.: Characterizations of Levitin–Polyak well-posedness by perturbations for the split variational inequality problem. Optimization 65(9), 1717–1732 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Ali, B., Harbau, M.H.: Convergence theorems for pseudo monotone equilibrium problem, split feasibility problem, and multivalued strictly pseudo contractive mappings. Numer. Funct. Anal. Optim. 40(10), 1194–1214 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Ansari, Q.H., Nimana, N., Petrot, N.: Split hierarchical variational inequality problems and related problems. Fixed Point Theory Appl. 2014, 208 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Censor, Y., Elfving, T.: A multi projection algorithm using Bregman projection in a product space. Numer. Algorithms 8, 221–239 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    MathSciNet  MATH  Google Scholar 

  42. He, Z.: The split equilibrium problem and its convergence algorithms. J. Inequal. Appl. 2012, 16 (2012)

    MathSciNet  Google Scholar 

  43. Dinh, B.V., Son, D.X., Anh, T.V.: Extragradient algorithms for split equilibrium problem and nonexpansive mapping. arXiv:1508.04914

  44. Li, J.: Split equilibrium problems for related games and applications to economic theory. Optimization 68(6), 1203–1222 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Hieu, D.V.: Projection methods for solving split equilibrium problems. J. Ind. Manag. Optim. 16(5), 2331–2349 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Suleiman, Y.I., Kumam, P., Rehman, H., Kumam, W.: A new extragradient algorithm with adaptive step-size for solving split equilibrium problems. J. Inequal. Appl. 2021, 136 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Alansari, M., Kazmi, K.R., Ali, R.: Hybrid iterative scheme for solving split equilibrium and hierarchical fixed point problems. Optim. Lett. 14(8), 2379–2394 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Kim, D.S., Dinh, B.V.: Parallel extragradient algorithms for multiple set split equilibrium problems in Hilbert spaces. Numer. Algorithms 77, 741–761 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Kuratowski, K.: Topology, vol. Vol. I+II. Academic Press, New York (1968)

    MATH  Google Scholar 

  50. Klein, E., Thompson, A.C.: Theory of Correspondences. Wiley, New York (1984)

    MATH  Google Scholar 

  51. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    MATH  Google Scholar 

  52. Rakocevik, V.: Measure of noncompactness and some applications. FILOMAT 12(2), 87–120 (1998)

    MathSciNet  Google Scholar 

  53. Cotrina, J., Garcia, Y.: Equilibrium problems: existence results and applications. Set-Val. Var. Anal 26, 159–177 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Dey, S., Vetrivel, V., Xu, H.K.: Well-posedness for the split equilibrium problem, Preprint

Download references

Acknowledgements

The first author gratefully acknowledges the financial support of the Post-Doctoral Program at the Technion-Israel Institute of Technology. Simeon Reich was partially supported by the Israel Science Foundation (Grant 820/17), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund. All the authors are grateful to the editor and to two anonymous referees for their useful comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soumitra Dey, Aviv Gibali or Simeon Reich.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Gibali, A. & Reich, S. Levitin–Polyak well-posedness for split equilibrium problems. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 88 (2023). https://doi.org/10.1007/s13398-023-01416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01416-8

Keywords

Mathematics Subject Classification

Navigation