Skip to main content
Log in

Spectral properties related to generalized complementary Romanovski–Routh polynomials

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Complementary Romanovski–Routh polynomials play an important role in extracting specific properties of orthogonal polynomials. In this work, a generalized form of the Complementary Romanovski–Routh polynomials (GCRR) that has the Gaussian hypergeometric representation and satisfies a particular type of recurrence called \(R_{II}\) type three term recurrence relation involving two arbitrary parameters is considered. Self perturbation of GCRR polynomials leading to extracting two different types of \(R_{II}\) type orthogonal polynomials are identified. Spectral properties of these resultant polynomials in terms of tri-diagonal linear pencil are analyzed. The LU decomposition of these pencil matrices provided interesting properties involving biorthogonality. Interlacing properties between the zeros of the polynomials in the discussion are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

There is no external data used and the information about the results are given in the references and cited at appropriate places.

References

  1. Alfaro, M., Marcellán, F., Peña, A., Rezola, M.L.: When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials? J. Comput. Appl. Math. 233(6), 1446–1452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Appell, P.: Sur une classe de polynômes. Ann. Sci. École Norm. Sup. (2) 9, 119–144 (1880)

  4. Barrios Rolanía, D., García-Ardila, J.C.: Geronimus transformations for sequences of \(d\)-orthogonal polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(1), Paper No. 26, 14 pp (2020)

  5. Batelo, M.A., Bracciali, C.F., Sri Ranga, A.: On linear combinations of \(L\)-orthogonal polynomials associated with distributions belonging to symmetric classes,. J. Comput. Appl. Math. 179(1–2), 15–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beardon, A.F., Driver, K.A.: The zeros of linear combinations of orthogonal polynomials. J. Approx. Theory 137(2), 179–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beckermann, B., Derevyagin, M., Zhedanov, A.: The linear pencil approach to rational interpolation. J. Approx. Theory 162(6), 1322–1346 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Behera, K. K., Swaminathan, A.: Biorthogonality and para-orthogonality of \(R_I\) polynomials, Calcolo 55(4), Paper No. 41, 22 pp (2018)

  9. Behera, K.K., Swaminathan, A.: Biorthogonal rational functions of \(R_{II}\)-type. Proc. Am. Math. Soc. 147(7), 3061–3073 (2019)

    Article  MATH  Google Scholar 

  10. Behera, K.K.: A generalized inverse eigenvalue problem and \(m\)-functions. Linear Algebra Appl. 622, 46–65 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bracciali, C.F., Pereira, J.A., Ranga, A.S.: Quadrature rules from a \(R_{II}\) type recurrence relation and associated quadrature rules on the unit circle. Numer. Algorithms 83(3), 1029–1061 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezinski, C., Driver, K.A., Redivo-Zaglia, M.: Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48(2), 157–168 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bueno, M.I., Marcellán, F.: Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 384, 215–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, C.-P., Srivastava, H.M., Wang, Q.: A method to construct continued-fraction approximations and its applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(3), 97–26 (2021)

    Google Scholar 

  15. Chihara, T.S.: On quasi-orthogonal polynomials. Proc. Am. Math. Soc. 8, 765–767 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach Science Publishers, New York (1978)

    MATH  Google Scholar 

  17. Derevyagin, M., Derkach, V.: Darboux transformations of Jacobi matrices and Padé approximation. Linear Algebra Appl. 435(12), 3056–3084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Draux, A.: On quasi-orthogonal polynomials of order \(r\). Integral Transf. Spec. Funct. 27(9), 747–765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Driver, K., Jordaan, K., Mbuyi, N.: Interlacing of zeros of linear combinations of classical orthogonal polynomials from different sequences. Appl. Numer. Math. 59(10), 2424–2429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. El-Shabrawy, S.R., Shindy, A.M.: Spectra of the constant Jacobi matrices on Banach sequence spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(4), 182–223 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fejér, L.: Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math. Z. 37(1), 287–309 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  22. Golub, G. H., Van Loan, C. F.: Matrix computations, third edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD (1996)

  23. Hendriksen, E., Njåstad, O.: Biorthogonal Laurent polynomials with biorthogonal derivatives. Rocky Mountain J. Math. 21(1), 301–317 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ismail, M.E.H., Masson, D.R.: Generalized orthogonality and continued fractions. J. Approx. Theory 83(1), 1–40 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ismail, M.E.H., Sri Ranga, A.: \(R_{II}\) type recurrence, generalized eigenvalue problem and orthogonal polynomials on the unit circle. Linear Algebra Appl. 562, 63–90 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jordaan, K., Toókos, F.: Interlacing theorems for the zeros of some orthogonal polynomials from different sequences. Appl. Numer. Math. 59(8), 2015–2022 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Joulak, H.: A contribution to quasi-orthogonal polynomials and associated polynomials. Appl. Numer. Math. 54(1), 65–78 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric orthogonal polynomials and their \(q\)-analogues. Springer Monographs in Mathematics, Springer, Berlin (2010)

  29. Konhauser, J.D.E.: Some properties of biothogonal polynomials. J. Math. Anal. Appl. 11, 242–260 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kuijlaars, A.B.J., McLaughlin, K.T.-R.: A Riemann-Hilbert problem for biorthogonal polynomials. J. Comput. Appl. Math. 178(1–2), 313–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kwon, K. H., Lee, D.W., Marcellán, F., Park, S.B.: On kernel polynomials and self-perturbation of orthogonal polynomials. Ann. Mat. Pura Appl. (4) 180(2), 127–146 (2001)

  32. Lubinsky, D. S., Sidi, A.: Some biorthogonal polynomials arising in numerical analysis and approximation theory. J. Comput. Appl. Math. 403, Paper No. 113842, 13 pp (2022)

  33. Marcellán, F., Chaggara, H., Ayadi, N.: 2-Orthogonal polynomials and Darboux transformations. Applications to the discrete Hahn-classical case. J. Differ. Equ. Appl 27(3), 431–452 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marcellán, F., Peherstorfer, F., Steinbauer, R.: Orthogonality properties of linear combinations of orthogonal polynomials. Adv. Comput. Math. 5(4), 281–295 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marcellán, F., Saib, A.: Linear combinations of \(d\)-orthogonal polynomials. Bull. Malays. Math. Sci. Soc. 42(5), 2009–2038 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Martínez-Finkelshtein, A., Silva Ribeiro, L.L., Sri Ranga, A., Tyaglov, M.: Complementary Romanovski–Routh polynomials: from orthogonal polynomials on the unit circle to Coulomb wave functions. Proc. Am. Math. Soc 147(6), 2625–2640 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meurant, G.: A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM J. Matrix Anal. Appl. 13(3), 707–728 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Martínez-Finkelshtein, A., Silva Ribeiro, L.L., Sri Ranga, A., Tyaglov, M.: Complementary Romanovski–Routh polynomials, orthogonal polynomials on the unit circle, and extended Coulomb wave functions. Results Math 75(1), 42–123 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Raposo, A.P., Weber, H.J., Alvarez-Castillo, D.E., Kirchbach, M.: Romanovski polynomials in selected physics problems. Cent. Eur. J. Phys. 5, 253–284 (2007)

    Google Scholar 

  40. Riesz, M.: Sur le problème des moments. Troisième Note. Ark. Mat. Fys. 17, 1–52 (1923)

    MATH  Google Scholar 

  41. Shohat, J.: On mechanical quadratures, in particular, with positive coefficients. Trans. Am. Math. Soc. 42(3), 461–496 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shukla, V., Swaminathan, A.: Chain sequences and Zeros of polynomials related to a perturbed \(R_{II}\) type recurrence relation. J. Comput. Appl. Math. 422, 114916 (2023)

  43. da Silva, A. P., Sri Ranga, A.: Polynomials generated by a three term recurrence relation: bounds for complex zeros. Linear Algebra Appl. 397, 299–324 (2005)

  44. Srivastava, H.M.: Some biorthogonal polynomials suggested by the Laguerre polynomials. Pacific J. Math. 98(1), 235–250 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. Varma, S., Yılmaz Yaşar, B., Özarslan, M. A.: Hahn-Appell polynomials and their \(d\)-orthogonality. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(3), 2127–2143 (2019)

  46. Weber, H.J.: Connections between Romanovski and other polynomials. Cent. Eur. J. Math. 5(3), 581–595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhedanov, A.: Biorthogonal rational functions and the generalized eigenvalue problem. J. Approx. Theory 101(2), 303–329 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the anonymous referees for their constructive criticism that helped in improvement of the manuscript. The work of the second author is supported by the NBHM(DAE) Project No. NBHM/RP-1/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Swaminathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, V., Swaminathan, A. Spectral properties related to generalized complementary Romanovski–Routh polynomials. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 78 (2023). https://doi.org/10.1007/s13398-023-01410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01410-0

Keywords

Keywords

Mathematics Subject Classification

Navigation