Skip to main content
Log in

Abstract

Let \({{\mathcal {O}}}\) be a stable Riemann orbifold, that is, a closed 2-dimensional orbifold with nodes such that each connected component of the complement of the nodes has an analytically finite complex structure of hyperbolic type. We say that \({{\mathcal {O}}}\) is of Schottky type if there is a virtual noded Schottky group K such that \(\varOmega ^{ext}/K\) is isomorphic to it, where \(\varOmega ^{ext}\) is the extended domain of discontinuity of K. This is the same as saying that \({\mathcal {O}}\) is the conformal boundary at infinity of the hyperbolic 3-dimensional handlebody orbifold \({\mathbb {H}}^3/K\). In this paper we prove that the stable Riemann orbifolds of certain signature are of Schottky type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bers, L.: Uniformization by Beltrami equations. Commun. Pure Appl. Math. 14, 215–228 (1961)

    Article  MathSciNet  Google Scholar 

  2. Bers, L.: Automorphic forms for Schottky groups. Adv. Math. 16, 332–361 (1975)

    Article  MathSciNet  Google Scholar 

  3. Boileau, M., Maillot, S., Porti, J.: Three-dimensional orbifolds and their geometric structures. Soc. Math. Fr. (2003)

  4. Bonahon, F., Otal, J.-P.: Laminations measurées de plissage des variétés hyperboliques de dimension \(3\). (French) [Bending measured laminations of three-dimensional hyperbolic manifolds]. Ann. Math. (2) 160(3), 1013–1055 (2004)

  5. Díaz, R., Garijo, I., Hidalgo, R.A.: Uniformizations of conformal involutions on stable Riemann surfaces. Isr. J. Math. 186, 297–331 (2011)

    Article  MathSciNet  Google Scholar 

  6. Hidalgo, R.A.: The noded Schottky space. Lond. Math. Soc. (3) 73, 385–403 (1996)

    Article  MathSciNet  Google Scholar 

  7. Hidalgo, R.A.: Noded Fuchsian groups. Complex Var. 36, 45–66 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Hidalgo, R.A., Maskit, B.: On neoclassical Schottky groups. Trans. Am. Math. Soc. 358, 4765–4792 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hidalgo, R.A.: On the retrosection theorem. Proyecciones 27(1), 29–61 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Koebe, P.: Über die Uniformisierung der Algebraischen Kurven II. Math. Ann. 69, 1–81 (1910)

    Article  MathSciNet  Google Scholar 

  11. Kra, I., Maskit, B.: Pinched 2-Component Kleinian Groups. Analysis and Topology, pp. 425–465. World Scientific Press, Singapore (1998)

    MATH  Google Scholar 

  12. Maskit, B.: Kleinian Groups. Grundlehren der Mathematischen Wissenschaften, vol. 287. Springer, Berlin (1988)

  13. Maskit, B.: A characterization of Schottky groups. J. Anal. Math. 19, 227–230 (1967)

    Article  MathSciNet  Google Scholar 

  14. Maskit, B.: On free Kleinian groups. Duke Math. J. 48, 755–765 (1981)

    Article  MathSciNet  Google Scholar 

  15. Maskit, B.: Parabolic elements in Kleinian groups. Ann. Math. 117, 659–668 (1983)

    Article  MathSciNet  Google Scholar 

  16. Reni, M., Zimmermann, B.: Handlebody orbifolds and Schottky uniformizations of hyperbolic \(2\)-orbifolds. Proc. Am. Math. Soc. 123(12), 3907–3914 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Thurston, W.P.: The Geometry and Topology of Three-Manifolds. Electronic version 1.1 (2002). http://www.msri.org/publications/books/gt3m/

Download references

Acknowledgements

The authors would like to thank José-Luis Estévez for very useful discussions and to the referees for their commments and suggestions which permitted us to improve the paper. This work was partially supported by Projects MTM2017-89420-P and FONDECYT 1190001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén A. Hidalgo.

Additional information

Dedicated to the memory of Ignacio Garijo

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, R., Hidalgo, R.A. Stable Riemann orbifolds of Schottky type. RACSAM 115, 111 (2021). https://doi.org/10.1007/s13398-021-01052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01052-0

Keywords

Mathematics Subject Classification

Navigation