Abstract
A subset A of a locally convex space E is called (relatively) sequentially complete if every Cauchy sequence \(\left\{ x_{n}\right\} _{n=1}^{\infty }\) in E contained in A converges to a point \(x\in A\) (a point \(x\in E\)). Asanov and Velichko proved that if X is countably compact, every functionally bounded set in \(C_{p}\left( X\right) \) is relatively compact, and Baturov showed that if X is a Lindelöf \(\Sigma \)-space, each countably compact (so functionally bounded) set in \( C_{p}\left( X\right) \) is a monolithic compact. We show that if X is a Lindelöf \(\Sigma \)-space, every functionally bounded (relatively) sequentially complete set in \(C_{p}\left( X\right) \) or in \(C_{w}\left( X\right) \), i. e., in \(C_{k}\left( X\right) \) equipped with the weak topology, is (relatively) Gul’ko compact. We get some consequences.
This is a preview of subscription content, access via your institution.
References
Arkhangel’skiĭ, A. V.: Topological function spaces. In: Math. Appl. vol. 78, Kluwer Academic Publishers, Dordrecht, Boston, London (1992)
Banakh, T., Ka̧kol, J., Śliwa, W.: Josefson-Nissenzweig property for \(C_{p}\)-spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113, 3015–3030 (2019)
Baturov, D.P.: Subspaces of function spaces. Vestnik Moskov. Univ. Ser. I Mat. Mech. 4, 66–69 (1987)
Bogachev, V.I., Smolyanov, O.G.: Topological Vector Spaces and Their Applications. Springer, Heidelberg (2017)
Buzyakova, R.Z.: In search of Lindelöf \(C_{p}\) ’s. Comment. Math. Univ. Carolinae 45, 145–151 (2004)
Cascales, B., Muñoz, M., Orihuela, J.: The number of \(K\)-determination of topological spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 106, 341–357 (2012)
Cembranos, P., Mendoza, J.: Banach Spaces of Vector-Valued Functions. Lecture Notes in Math, vol. 1676. Springer, Berlin, Heidelberg (1997)
Ferrando, J.C.: On a Theorem of D.P. Baturov. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111, 499–505 (2017)
Ferrando, J. C.: Descriptive topology for analysts. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, Paper No. 107, 34 pp. (2020)
Ferrando, J.C., Gabriyelyan, S., Ka̧kol, J., : Metrizable-like locally convex topologies on \(C(X)\). Topol. Appl. 230, 105–113 (2017)
Ferrando, J.C., Ka̧kol, J., Saxon, S. A, : Characterizing \(P\)-spaces in terms of \(C\left( X\right) \). J. Convex Anal. 22, 905–915 (2015)
Ferrando, J.C., López-Pellicer, M.: Covering properties of \(C_{p}\left( X\right) \) and \(C_{k}\left( X\right) \) (Filomat, to appear)
Floret, K.: Weakly Compact Sets. Lecture Notes in Math, vol. 801. Springer, Berlin, Heidelberg (1980)
Gabriyelyan, S.: Ascoli’s theorem for pseudocompact spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, Paper No. 174, 10 pp. (2020)
Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)
Ka̧kol, J., Kubis, W., López-Pellicer, M., : Descriptive Topology in Selected Topics of Functional Analysis. Springer, Heidelberg (2011)
King, D.M., Morris, S.A.: The Stone-Čech compactification and weakly Fréchet spaces. Bull. Austral. Math. Soc. 42, 340–352 (1990)
Muñoz, M.: A note on the theorem of Baturov. Bull. Austral. Math. Soc. 76, 219–225 (2007)
Orihuela, J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36, 143–152 (1987)
Pełczyński, A., Semadeni, Z.: Spaces of continuous functions (III) (Spaces \(C\left( \Omega \right) \) for \(\Omega \) without perfect sets). Studia Math. 18, 211–222 (1959)
Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973)
Talagrand, M.: Espaces de Banach faiblement \(K\) -analytiques. Ann. Math. 110, 407–438 (1979)
Tkachuk, V.V.: The space \(C_{p}(X)\): decomposition into a countable union of bounded subspaces and completeness properties. Topol. Appl. 22, 241–253 (1986)
Tkachuk, V.V.: A \(C_{p}\)-Theory Problem Book. Topological and Function Spaces. Springer, Heidelberg (2011)
Todorcevic, S.: Topics in Topology. Springer, Berlin (1997)
Valdivia, M.: Some new results on weak compactness. J. Funct. Anal. 24, 1–10 (1977)
Acknowledgements
This work was supported for the first named author by the Grant PGC2018-094431-B-I00 of Ministry of Science, Innovation and Universities of Spain.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ferrando, J.C., López-Alfonso, S. On weakly compact sets in \(C\left( X\right) \). RACSAM 115, 38 (2021). https://doi.org/10.1007/s13398-020-00987-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13398-020-00987-0
Keywords
- Lindelöf \(\Sigma \)-space
- Realcompact space
- \(\mu \)-Space
- Sequentially complete set
Mathematics Subject Classification
- 54C35
- 54C05
- 46A50